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Abstract

In this thesis the implementation and analysis of a highly accurate delay (round
trip time) and delay variation measurement system for Internet Protocol (IP)
networks is described. The system delivers an accuracy better than 1 µs, and
typically as low as 10 to 150 ns depending on configuration, using off-the-shelf
Linux computers and network adapters with IEEE 1588 support. The evaluation
of commercial products, Linux’s timestamp application programming interfaces
(APIs) and generally available Ethernet controllers resulted in a ping-like ap-
plication designed to exploit the Intel 82580 controller to it is fullest, patches for
the Linux kernel that among other things enables timestamping of IPv6 pack-
ets, and a complete, easy-to-use, self-configuring service level agreement (SLA)
system for Tele2 AB.

The way that Linux’s SO_TIMESTAMPING and the Ethernet controller’s IEEE
1588 support is implemented doesn’t allow for transmit (TX) timestamps to
be embedded in sent packets, and thus existing protocols such as Two-Way
Active Measurement Protocol (TWAMP) could not be used. Instead, a proto-
col using User Datagram Protocol (UDP) for measurement packets (ping/pong)
and Transmission Control Protocol (TCP) for transfering timestamps from re-
flector (server) to initiator (client) was designed. The difficulties of accurate
time synchronization resulted in the application only supporting two-way delay
measurements for the time being.

Targetting rapid deployment and low maintenance, the measurement appli-
cation probed was built into an appliance based on Debian GNU/Linux. It
is running on low-cost Intel Atom servers, booting of a read-only USB stick
with an simplified administration console. The measurement node appliances
are automatically configured, for example in a full-mesh topology, from a cen-
tral administration system and aggregates measurement data making it readily
available for Tele2’s statistics collection systems.

Based on requirements and requests, the system differentiates itself by pro-
viding properties in areas where available products were found lacking. Apart
from the mentioned accuracy advantage, the system (among other things) veri-
fies DSCP values of returned pongs, allows for high packet rates, performs con-
tinuos measurements with no gaps in-between (even during re-configuration)
and dynamically adjusts the aggregation resolution in order to store and dis-
play more detailed data during transient conditions and network anomalies.

Keywords: IP, measurement, IEEE 1588, SLA, quality, delay, delay variation,
jitter, round-trip time, latency.
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Chapter 1

Introduction

This projects overall aim was to provide Tele2 1 with a modern, accurate quality
assurance and reporting system. The following sections will explain what is
being measured and motivate the development of a new system.

1.1 Prerequisites

Computer communication is a fairly complex topic, even when considering basic
scenarios. The communication model is layered according to the Open Systems
Interconnection (ISO) model2, which describes how to encapsulate protocols and
technologies into each other. For example, “IP over Ethernet over TP” is the
process of sending Internet Protocol (IP)[34] packets in several Ethernet frames
as electronic signals in physical twisted pair (TP) cables. This happens to be the
by far most common technology for local networks, which is what most people
get in touch with. A good understanding of these three layers (network, data
link and transport) is recommended in order to fully comprehend this thesis.

The networks built by carriers and telecommunication operators (TELCOs)
differs from local networks in many aspects, in spite of both being based on
IP. They transmit data over vast distances, and do in fact constitute the main
building blocks of the Internet. Consequently their design and technology poses
an even greater challenge in order to be understood. Information about such
technologies will be explained within the thesis, to a reasonable extent.

There are several code listings in the thesis. Some of them contain program-
ming code, while others list commands executed from a computer’s shell (such
as Unix’s sh/bash or Microsoft Windows’ cmd.exe). Command listings always
start with the character “$” for commands that may be executed as any low-
privilege user, and “#” for commands that has to be executed as a super-user

1Tele2 AB is major European telecommunication operator
2Specified by the International Organization for Standardization in the 1980’s, inspired by

ARPANET which came to compose the Internet.
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(“root” in Unix-like operating systems such as Linux). The command listing for
starting a program named probed as a super-user would be:

# probed

1.2 Background

In a packet switched (PS) network such as the Internet there are no dedicated
circuits between sender and receiver; thus no strict timing for metrics such as
delay (latency). Common derivates of delay are jitter (variation in delay) and
loss (infinite delay). The traditional method for measuring delay is by sending a
probe from an initiator3 to a reflector4, who responds in order for the initiator
to calculate the round trip time (RTT). Almost every IP-compliant device5 has
Internet Control Message Protocol (ICMP) ping[33] command built-in, and is
thus capable of being initiator or reflector for such a measurement. The RTT is
the two-way delay, similar to how distance is measured with light and mirrors.
The most striking difference however, is that IP packets are routed6 and thus
possibly traversing the network along asymmetrical paths. Consequently, the
relation between the one-way delay o and the RTT r is not always o = r

2 .
Devices supporting one-way delay measurements are scarce, and typically

implements more sophisticated protocols such as One-Way Active Measurement
Protocol (OWAMP). One reason for not being an established protocol in stock
devices, is that accurate time synchronization is needed in order to provide ac-
curate results. IP does not provide time synchronization, and although some
underlying data link protocols might in fact do so, that information is lost when-
ever IP traverses diverse data link networks. Time synchronization is instead
implemented on top of IP, for example using Network Time Protocol (NTP)[24],
which degrades its accuracy. Recall that IP is in OSI layer 3, whereas NTP is
an application layer protocol, and consequently layer 7. Methods for performing
accurate one-way measurements will be presented in chapter 2.

1.2.1 Motivation

The necessity to accurately quantify communication network quality has emerged
from many areas, such as verification of Service License Agreements (SLAs),
system planning, and work related to performance optimizations. Also, Inter-
network engineering and management, i.e., routing and transmission network
utilization optimization, directly depends on the ability to acquire traffic met-
rics such as delay, delay variation, loss and bandwidth utilization[14].

Delay-derived measurements have become increasingly important with the

3The initiator, also referred to as client, makes the initial request
4The reflector, also referred to as server, responds according to a defined protocol
5Equipment with IP connectivity, such as a computer, server, router, smart-phone, etc.
6Transmitted in several steps, or hops, from router to router on its way to the destination

3



popularity of modern applications such as Voice over IP (VoIP) and carrier’s7

migration from circuit switched (CS) networks to packet switched (PS) networks
such as Ethernet. The real-time requirements of CS technologies such as Syn-
chronous Digital Hierarchy (SDH) and Plesiochronous Digital Hierarchy (PDH)
makes them very sensitive to inconsistencies in network quality if transported
over a PS network. Tele2’s ongoing work in this area is the major motiva-
tion for this project, which aims at producing and documenting a system for
highly accurate (µs), continuous delay measurements, suitable for large-scale
global deployments, with the results being analyzed at a central location. In
practice, the aim is to accurately measure the delay variation of Tele2’s core
IP network, which will transport CS data using Circuit Emulation Service over
Packet Switched Network (CESoPSN) equipment[39]. In order for these de-
vices to tolerate delay variation, they have a configurable jitter buffer. The
larger buffer, the more delay variation (jitter) they can accept. The buffer does
however introduce a fixed delay, which of course should be kept as short as pos-
sible. Therefore, knowing the jitter is of crucial importance while operating a
CESoPSN network.

1.2.2 Previous works

The topic of Internet/IP network quality assurance has been well studied. Highly
notable is the work of the IP Performance Metrics (IPPM) working group of
the Internet Engineering Task Force (IETF), which has written a number of
Request For Comments (RFC)8 on the topic. Its early works regards finding
metrics for describing the different phenomena which arises in IP networks,
but later works include for example “Two-Way Active Measurement Protocol”,
TWAMP [17], which is a protocol for measurement of two-way metrics between
network elements.

The Surveyor project carried out in the late 1990s used about 50 measure-
ments probes, standard PCs with attached GPS clock synchronization cards,
which performed active measurements of Internet performance [20]. Later,
Sprint launched their passive IPMON system, which gathers real network traffic
with highly accurate timestamps from backbone links at a number of Sprint’s
core sites [15]. The data is then transfered to a computing cluster which derives
measurement values from the packet dumps.

Later on, similarities between Surveyor and the system that this project
evolved into will appear.

7Also referred to as Internet Service Providers (ISPs); of which the company Tele2 AB
that sponsors this work is one example

8The documents released by IETF containing protocol specifications, research and other
things regarding the Internet.
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1.3 Objective

The primary objective is to investigate methods for quality assurance of IP
networks and develop a system which provides Tele2 with accurate measurement
data. Major effort has been put into making the system simple to operate, both
when it comes to administration and giving the user access to the data needed.
An accuracy better than 1 ms, and if possible in the range of microseconds, was
initially requested.

The system will consist of measurement equipment placed at key locations
within the network. A central system will at a regular interval collect data from
the measurement equipment, store it and make it accessible to the user.

1.4 Scope

The project is limited to providing measurement data for the core network.
Although, the theory presented as well as the measurement practice developed
is highly applicable in the fringe of the network as well. The emphasis is on
active measurements, where measurement probes are injected into the network.

A theoretic background will be provided, but to make sense to the reader a
good understanding of IP networking is required.

1.5 Outline

Initially, a theoretic background regarding Internet quality measurements is pre-
sented in chapter 2, where metrics such as packet loss, delay and delay variation
are introduced (section 2.2). A number of issues with clocks and sampling are
then presented. This chapter is largely based on the work of the IETF working
group of IPPM.

Then, in chapter 3, the evaluation of measurement systems is described.
Requirements are set based on especially demanding applications in section 3.1
and different pieces of measurement equipment are evaluated in section 3.2.
Section 4 contains an extensive description of the system developed, which is
dubbed SLANG.

Chapter 5 concludes the thesis body, with results, discussion summary and
some ideas about what further work on the topic might result in.
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Chapter 2

Measuring the Internet

How is the Internet measured? There is a multitude of concepts, metrics and
methods available. The general focus, however, is on quality and will thus be
emphasized in this thesis. This chapter first covers some measurement concepts
and continue with a list of different network metrics. Lastly, practical issues
regarding sampling and time, which turn up while performing measurements,
are presented.

2.1 Internet measurement concepts

Before digging into metrics and measurement methods, an introduction to a
few concepts is in place. First, the distinction between active and passive mea-
surements will be made and then some pros and cons of one-way and two-way
measurements will be presented.

2.1.1 Active versus passive measurements

An active measurement is performed by injecting measurement probes into the
network being measured. The schoolbook example is the ping command avail-
able on most computer platforms which transmits an ICMP echo request to a
remote system and measures the time required for the remote system response
to return.

The injected measurement traffic does naturally affect the network which
might impact the validity of the measurement and network itself. However,
as the focus is on core networks where the available bandwidth generally is
measured in tens of gigabits per second, the impact of a measurement packet
stream of (example values, valid to an order of magnitude) ten 512 byte packets
per second on a 10 Gbit/s link is negligible. As 10×512×8

10×109 = 4.1 × 10−6, a few
ten thousands of a percent of the available capacity, hundreds of concurrent
measurement sessions could be run in parallel without affecting the network
enough to be worth mentioning.
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Instead of inserting traffic into the network being measured the already
present, real-world traffic, can be used to gather measurement data. An ex-
ample of this is the IPMON system deployed by Sprint[15].

2.1.2 One-way versus two-way measurements

One clear distinction that can be made between active measurements is one-way
and two-way measurements. The primary motivation for one-way measurements
is that Internet paths1 often are asymmetrical, that is the path taken by packets
from source to destination is not the same as the path from destination to
source. The two paths can have drastically different properties and can perfectly
well traverse different Internet service providers’ networks. Other things that
affect the measurement result differently in either direction is different traffic
conditions and differing Quality of Service (QoS) configuration. [32]

One-way measurements are complicated by the requirement of a low clock
offset between the initiator and the responder. When a packets transmit (at
time T1) and receive (at time T2) and the timestamps are compared to find the
packet delay D = T2−T1, it is clear that the accuracy of measurement depends
largely on the clock synchronization. In the two-way case, on the other hand,
the clock offsets cancel each other out giving a value which does not depend on
the offset. The clock’s impact on the accuracy of measurement is reduced to the
clock skew (see section 2.4) between the two packets and timestamp accuracy.
The impact of clock skew during these short time intervals is generally small,
unless the clock is adjusted more severely by for example an NTP service.

In favor of the two-way measurements if the ability to performed certain
measurements without deploying a specific responder host by using for example
ICMP echo or Transmission Control Protocol (TCP) as described in [21].

2.2 Metrics for Internet quality

Of utmost importance while performing measurements are the metrics used to
express the measured phenomena. The Internet Engineering Task Force (IETF)
IP Performance Metrics (IPPM) working group has defined a set of metrics for
Internet performance measurements which are suitable also for quality measure-
ments. Also the International Telecommunication Union (ITU) has defined a
set of metrics [2], but as the emphasis is on IP networks the bulk of this section
is based on the works of IPPM.

2.2.1 General concepts

Before going deeper into specific metrics a few words about general concepts are
in place.

1A sequence of hosts and links describing one way through the network. A path is defined
as being unidirectional. [32]
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Where applicable, this part tries to adhere to the foundation laid out in [32]
when it comes to for example vocabulary. Although definitions of concepts such
as hosts and paths can be found there, a few will be explained in detail below.

An important concept introduced in [32] is the notion of “Packet of type P”
as the measured value of a metric might vary with what type of packet is being
looked upon. For example, a packet marked with a Differentiated Services Code
Point (DSCP) prioritized higher in the network may have a lower packet loss
probability and packet delay than a differently marked packet, a packet with
erroneous IP header checksum might be discarded along the way, as would a
packet with a too low TTL.

Due to this, the notion of a “packet of type P” is introduced as a generic
packet type used to describe measurement traffic. In certain cases the packet
type is more strictly defined, and thus gives us the ability to talk about “generic
IP-type-P-connectivity or more specific IP-port-HTTP-connectivity” [32].

Additionally, “a separation between three distinct – yet related – notions of
metrics” are introduced in [32], that of the singleton, sample and statistical
metric.

The singleton metric is the smallest metric of the subject available, for ex-
ample the two-way packet delay for one single packet. From these atoms the
sample metric can be derived. Sample metrics are collections of singleton met-
rics, for example the two-way packet delay for packets transmitted at a rate of
100 packets per second (pps) for five minutes. From a sample can then a statistic
metric be calculated by calculating some statistic from the sample of singleton
metrics, for example the mean or median of the 30000 two-way packet delay
metrics in the sample from the previous example.

We also make a distinction between basic and derived metrics, where basic
metrics are directly measured (as one-way delay) and derived metrics are calcu-
lated from basic metrics (such as one-way delay variation calculated from two
one-way delay measurements).

2.2.2 Packet loss

As one of the most basic IP performance metrics, the packet loss serves as
an important foundation for IP performance measurements. As IP does not
guarantee successful delivery of a datagram most software has some robustness
to packet loss, but what ever technique utilized the performance will sooner or
later start to suffer as the packet loss increases.

IPPM has defined a singleton metric for one-way packet loss as:

>>The *Type-P-One-way-Packet-Loss* from P to P at T is 0<<
means that S sent the first bit of a Type-P packet to Dst at wire-
time* T and that Dst received that packet.

>>The *Type-P-One-way-Packet-Loss* from Src to Dst at T is 1<<
means that Src sent the first bit of a type-P packet to Dst at wire-
time T and that Dst did not receive that packet. [4]

8



A practical issue is to differentiate between a very long delay and a lost packet.
Putting an upper bound to the time waited for a response is necessary for this
purpose. If packet loss for a specific application is being measured, the behavior
that specific application should be taken into account when determining the ac-
tual time out value, as different applications handle high delay differently. In [21]
a value of 10 seconds is recommended for general connectivity measurements.

Corrupted packets which still arrive at the destination are regarded as lost
with the motivation that it can not safely be determined that the source and
destination hosts are correct in the case of a corrupted IP header or that the
packet really belongs to a specific test stream in the case of a corrupted datagram
payload.

2.2.3 Packet delay

The packet delay is a measure of how long time it takes to transfer a packet
from source to destination. A number of factors such as cable length, bit rate
and network congestion affects the delay, which therefore is split into distinct
parts; transmission delay, propagation delay and routing delay .

• Transmission delay is the time needed to output all bits on the wire which
makes it dependent on the bit rate used. The transmission delay DT is
given by DT = N/R where DT is given in seconds, N is the number of
bits to transfer and R is the bit rate in bits per second.

• Propagation delay is the time from the first bit leaving the source host
until it reaches the destination node, depends on the cable length and
propagation speed in the cable medium. DP = d/s where Dp is the prop-
agation delay in seconds, d the distance in meters and s the propagation
speed in meters per second. For CAT 5 cable the propagation speed is
about 0.64c where c denotes the speed of light in vacuum[41].

• Routing delay is the delay induced by routers along the link and is defined
as the time between the first bit of a packet reaches the input interface
until the first bit leaves the output interface. It is in turn divided into
three parts; queuing delay during which packets spend in queues waiting
to be processed, processing delay during which the packet is inspected and
the packet action is determined (for example route lookups) and, lastly,
additional delay which denotes all other types of delay induced by routing
equipment.

When regarding packet delay, two distinctions needs to be made: that of the
one-way and two-way packet delay.

2.2.3.1 One-way delay

Why measure one-way delay? On the Internet asymmetric paths between two
hosts are commonplace, that is the traffic between the hosts does not necessarily
utilize the same path in both directions. Even though the paths are symmetric,
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the traffic load conditions can differ between the directions, as can the network
QoS configuration.

In [3] the singleton “Type-P-One-way-Delay” is defined as follows:

For a real number dT, >>the *Type-P-One-way-Delay* from Src
to Dst at T is dT<< means that Src sent the first bit of a Type-P
packet to Dst at wire-time* T and that Dst received the last bit of
that packet at wire-time T+dT.

>>The *Type-P-One-way-Delay* from Src to Dst at T is unde-
fined (informally, infinite)<< means that Src sent the first bit of a
Type-P packet to Dst at wire-time T and that Dst did not receive
that packet. [3]

Important to note is that the metric denotes the time needed to transfer the
entire packet, which means that the measured value will be dependent on the
packet size.

To perform a one-way delay measurement the general procedure is to form a
test packet of type P at the initiator and transmitting it to the reflector. As this
is done, a timestamp will be taken when the packet is transmitted and received,
when the packet is as close to the wire as possible. These timestamps can then
be compared to obtain the type-p-one-way-delay. Here two problems with one-
way measurements arises; the accuracy of the measurement is bound by how
closely the clocks at the source and destination host are synchronized. Also
their resolution and skew together with how close to the wire the timestamps
can be taken impacts the accuracy of measurement.

2.2.3.2 Two-way delay

The two-way delay or round-trip time (RTT) is what you obtain from the well-
known ping program. As stated in the previous section, the two-way delay
in comparison to the one-way lacks information needed to determine in what
direction the delay is seen.

IPPM specifies a two-way (round-trip) delay metric in [5] where the singleton
metric is defined as:

For a real number dT, >>the *Type-P-Round-trip-Delay* from Src
to Dst at T is dT<< means that Src sent the first bit of a Type-P
packet to Dst at wire-time* T, that Dst received that packet, then
immediately sent a Type-P packet back to Src, and that Src received
the last bit of that packet at wire-time T+dT.

>>The *Type-P-Round-trip-Delay* from Src to Dst at T is unde-
fined (informally, infinite)<< means that Src sent the first bit of a
Type-P packet to Dst at wire-time T and that (either Dst did not
receive the packet, Dst did not send a Type-P packet in response,
or) Src did not receive that response packet.
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Figure 2.1: Two-way delay measurement with four timestamps

>>The *Type-P-Round-trip-Delay between Src and Dst at T<<
means either the *Type-P-Round-trip-Delay from Src to Dst at T
or the *Type-P-Round-trip-Delay from Dst to Src at T. When this
notion is used, it is understood to be specifically ambiguous which
host acts as Src and which as Dst. [5]

Also in this case, the measured value is dependent on the packet size.
The general procedure for performing a measurement is for the initiator

host to craft a type-P packet and transmit it to the reflector host while taking
a timestamp when the packet is as close to the wire as possible. The reflector
returns the packet as soon as possible and another timestamp is taken as the
packet returns to the initiator. By comparing these two timestamps the two-way
delay can be estimated.

In contrast to the one-way case, the accuracy of measurement is not depen-
dent on the synchronization between the clocks of the initiator and responder
system as the error is cancelled out when the subtraction is performed. Instead,
it is the clock resolution and skew that limits the accuracy of measurement and
consequently it is easier to get a highly accurate two-way measurement than a
one-way.

Another source of error that so far has not been addressed is the time the
packet spends at the responder, what in [5] is called the host time. In Net-
work Time Protocol (NTP) [24], for each delay measurement four timestamps
T1, T2, T3, T4 are taken when the packet exit the initiator host, enter the respon-
der, exit the responder and enters the initiator host once again respectively. See
figure 2.1.

By using this scheme the two-way delay can be calculated as in equation 2.1
with less impact of host time.

D = (T4 − T1)− (T3 − T2) (2.1)

Instead, the main concern is how close to the wire the timestamp can be taken.

2.2.4 Packet delay variation (jitter)

For streaming applications like VoIP the packet delay variation is of great im-
portance. As the data is presented to a user in a constant stream, problem
arises when the arrival of packets is not regular as the receiving application
can be missing data to present. To mitigate this problem, a play-out or jitter
buffer is usually used, which simply delays the stream for some time to allow for
non-regularities. When it comes to quality measurements the delay variation

11



plays an important role as it can be used as a measure of transient network con-
gestion in comparison to packet loss which may indicate long-term congestion.
The main source of variation in delay is variation in queue depth of the routers
(part of the routing delay mentioned in section 2.2.3) traversed along the path.
Packet delay variation is often referred to as jitter, but as this word has other
meanings as well the term packet delay variation will be used to an as large
extent as possible [9].

In the literature there are a couple of different definitions of packet delay
variation. IPPM has defined the term IP packet delay variation (ipdv) as

Type-P-One-way-ipdv is defined for two packets from Src to Dst
selected by the selection function F, as the difference between the
value of the type-P-One-way-delay from Src to Dst at T2 and the
value of the type-P-One-Way-Delay from Src to Dst at T1. T1 is the
wire- time at which Scr sent the first bit of the first packet, and T2
is the wire-time at which Src sent the first bit of the second packet.
[9]

In appendix A.3.1 of [19] the jitter is defined as “the absolute value of the dif-
ference between the arrival times of two adjacent packets minus their departure
times”, |(T2j − T1j) − (T2i − T1i)| where T2 and T1 represents the arrival and
departure times of packets i and j where j > i.

Another approach is given for the jitter estimation used in Real-time trans-
port protocol (RTP) [37]. Paired with each RTP data stream a control stream
using the RTP Control Protocol (RTCP) is set up, which provides feedback on
the quality of the transmission. The RTP inter-arrival jitter J is defined to
be “the mean deviation (smoothed absolute value) of the difference D in packet
spacing at the receiver compared to the sender for a pair of packets” [37]. The
packet spacing difference between source and destination D is the same as the
packet delay variation between two consecutive packets as can be seen in formula
2.2.

D(i, j) = (T1j − T1i)− (T2j − T2i) = (T1j − T2j)− (T1i − T2j) (2.2)

From the D the inter-arrival jitter J is derived as

J(i) = J(i− 1) +
(|D(i, i− 1)| − J(i− 1))

16
(2.3)

This value is calculated continuously for each received packet. As previous
packets are take into account, each calculated value provides information not
only about the current network state, but the state over a (short) time period.

2.2.5 Packet reordering

IP lacks a mechanism to ensure in-order packet delivery. Due to the nature of
packet-switched networks packets belonging to a stream can take different routes
through the network, routes which may vary in transmission time. Other reasons
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packet reordering occur are lower layer protocols correcting errors or equipment
utilizing parallel processing of network traffic [26]. IPPM has defined packet
reordering as:

The value of Type-P-Reordered is defined as TRUE if s < NextExp
(the packet is reordered). In this case, the NextExp value does not
change.

The value of Type-P-Reordered is defined as FALSE if s>= NextExp
(the packet is in-order). In this case, NextExp is set to s+1 for
comparison with the next packet to arrive. [26]

To determine whether packets are delivered in-order a strictly increasing se-
quence number s identifying what number in the order a specific packet has is
needed. Then, according to [26] an incoming packet is said to be reordered if its
sequence number is lower than what was expected. In all other cases the packet
is considered to be in order. This is in [31] described as emphasizing late rather
than premature arrivals, which according to the same source gives about 25%
higher numbers.

It might also be of interest to quantify the magnitude of packet reordering,
what in [26] is dubbed the reordering extent. Put in words, the reordering extent
is distance, measured in packets, between the reordered packet and the earliest
received packet with a higher sequence number.

2.2.6 Media delivery index

The Media Delivery Index (MDI) is a derived metric provided as an effort to
quantify the quality of streaming transmission over IP. It is intended to provide
a metric useful when monitoring the impact of IP network dynamics on a large
number of simultaneous streams in a production network [40]. As stated in
[40], “It is believed that the MDI provides the necessary information to detect
all network-induced impairments for streaming video or voice-over-IP applica-
tions.”.

The MDI is expressed as
DF : MLR (2.4)

where the Delay Factor (DF) is a measure of the maximum difference between
the arrival of media data and the drain of media data over an interval. For a
media service using a fixed bit rate this is the drain rate while the arrival rate is
the actual rate which data arrives at the destination. For example, a 64 kbit/s
Pulse Code Modulation (PCM) voice stream has a drain rate of 64 kbit/s. The
DF-value is then the maximum number of milliseconds required to fill up the
missing (or drain the present surplus) data in a buffer at the receiving side at
the drain rate during a specific interval. The interval is typically one second for
higher bit rate streams (1 mbit/s and upwards) [40]. The delay factor gives a
hint about how large the receiver buffer needs to be to handle the present packet
delay variation.
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The Media Loss Rate (MLR) is on the other hand a measure of lost data
during the transmission. The value is defined as the number of lost or reordered
flow packets during a time interval, where flow packets is not necessarily equal
to the number of IP packets (for example, it is common to carry seven 188-byte
Moving Picture Experts Group Transport Stream (MPEG TS) flow packets in
one IP packet [40]).

2.3 Sampling issues

To study variances such as delay variation it is required to take a sample (see
section 2.2.1) of singleton values. This can be done in a number of ways with
respect to where and when the samples are taken. This will decide what phenom-
ena the measurement system will be able to detect. For example, if sampling
packets before reaching a specific host the host’s impact will be missing, the
same goes for not sampling during a specific time interval.

It is also highly desirable that the sample is unbiased, “that the process
of collecting the measurements in the sample did not skew the sample so that
it no longer accurately reflects the metric’s variations and consistencies” [32].
Examples might be when many measurement probes are transmitted at the
same time which might congest the network, or sampling at regular intervals
which might hide periodic network behavior.

Further, a non-predictable sampling interval makes it more difficult for a
network operator to temporarily modify the network to perform more favorable
at the time measurements are performed [32].

A common sampling scheme is to sample at a fixed time interval, periodic
sampling. It is generally simple to perform, but exhibits the problem of po-
tentially showing only part of metrics having a periodic behavior as mentioned
above. It is also highly predictable. However, the periodic behavior can be
attractive for performing measurements mimicking a specific protocol, such as
the 50 Hz packet rate of G.711 u-law-encoded audio over RTP [13].

According to [32] a better way to perform sampling is what they call “ran-
dom additive sampling”, where samples are separated by independently selected
random intervals with some distribution G(t). By choosing different G(t) dif-
ferent sampling quality is obtained. With a good selection of distribution, an
unbiased sample can be obtained.

By letting G(t) have an exponential distribution with rate λ

G(t) = 1− e−λt (2.5)

so called Poisson sampling is obtained, a sampling method which has all the
desired properties (non-biased, non-predictable, minimal effect on the network
under test) [32].
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2.4 Clock issues

The accuracy of many of the mentioned measurement types is directly linked to
how accurately the current time can be determined. Speaking of clock issues,
some definitions are in place.

• The synchronization between two clocks specifies how well two clocks agree
on what the current time is. The actual difference between the two clocks
is the offset.

• The resolution of a clock tells us the smallest time increase the clock can
perform. The resolution does not include how often the clock actually
is updated, neither how high precision the time is presented with. Also
worth mentioning is that some system clocks make sure not to report the
same value twice by adding a small value to the time if it is a duplicate
of a previous time. Neither this smaller, artificial time increase is part of
the clock resolution.

• A clock’s accuracy is how well the clock agrees with Coordinated Universal
Time (UTC)2.

• The clock skew is a measure of the frequency difference between the clock
and true time, that is the rate of change (first derivative) of offset between
the clock and true time. Also the rate of change of the skew is of interest
as real clocks do not show a constant drift due to for example temperature
changes. This second derivative of the offset is called clock drift [23].

Depending on the type of measurement performed the clock accuracy has dif-
ferent impact on the measurement result. As stated in two-way delay mea-
surements are not affected by a large clock offset as the errors are canceled
out, compared to the one-way case where the clock offset is a major source to
inaccuracy.

There are a number of methods to maintain a level of clock accuracy in
computer systems.

2.4.1 GPS

The Global Positioning System (GPS), is a widely known system for acquiring
the current location. A set of satellites, currently 31 of them [44], continuously
transmit time data which receivers can use to deduce the current position by
calculating the time the signals from each satellite needs to propagate to the
receiver. In order for this to be possible, the receivers clock is accurately syn-
chronized to atomic clocks in the GPS satellites which in turn regularly are
synchronized to UTC. Thanks to this the GPS system can be used to synchro-
nize clocks to UTC with a sub-microsecond accuracy. [12].

2Coordinated Universal Time is a standard time used worldwide to regulate clock and
time.[42]
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2.4.2 NTP

The Network Time Protocol (NTP), is a protocol used to synchronize clocks
over IP networks [23]. NTP is built up by a hierarchy of servers where the
hierachy level gives the distance to the reference clock. The hierarchy level is
with NTP nomenclature called the stratum level, where the top level servers are
assigned stratum zero and the level increases with one for each level you descend.
Stratum zero devices are the reference clock themselves such as atomic clocks,
GPS receivers or radio clocks. An NTP server with a lower stratum level is
generally more accurate than the servers at higher levels.

An NTP clients periodically transmits packets to their servers, which the
server respond to with time data. Using packet timestamps the client over
time can estimate the latency and jitter over the path to the server and use
this information to increase the accuracy. The NTP client also calculates an
estimated accuracy of the clock synchronization. [23]

2.4.3 PTP

To achieve higher accuracy the Precision Time Protocol (PTP) was developed
by IEEE and released as IEEE 1588. Two versions exist: the older IEEE 1588-
2002 and the newer non-compatible IEEE 1588-2008 which adds some function-
ality. The high accuracy mainly stems from the use of specialized hardware
which performs highly accurate timestamping when PTP packets are sent and
transmitted, enabling highly accurate delay measurements.

The initial objective of PTP was to provide a method for highly accurate
(sub-microsecond) clock synchronization in local networks. PTP clocks are orga-
nized in a master-slave hierarchy according to information conveyed in multi-cast
sync messages. Each slave synchronizes its clock to its master by exchanging
a number of packets at a slightly higher rate then NTP; max 1 pps for IEEE
1588-2002 and 10 pps for IEEE 1588-2008. A clock can function as slave on
one subnet and master on another, to create chains of clocks. A set of clocks
synchronizing to one another form a domain, and each domain selects a grand
master which is placed on top of the clock hierarchy. In a real-world scenario, a
PTP-aware network switch or repeater can act as slave on one subnet where, for
example, the grand master clock resides and as master on other subnets. The
switch is then functioning as a boundary clock which segments the network for
PTP and will not forward synchronization packets between the different sub-
nets. The boundary clock also removes the variation in delay itself would induce
to the forwarded PTP packets as the packets never pass through the device.[12]

IEEE 1588-2008 adds methods for acquiring even higher accuracy. As an
alternative to boundary clocks it also adds transparent clocks, devices which
instead of being part of the master-slave chain updates a time-interval field in the
PTP packets with data which the receiving PTP device can use to compensate
for the delay induced by the transparent clock[16]. As the IEEE 1588-2008
requires changes to the packet format, it is not backwards compatible with
IEEE 1588-2002.
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Chapter 3

Evaluation of measurement
products

When this project was planned, it was assumed that commercially available
measurement nodes would fulfill the requirements stated. In this section, an
evaluation of the preferred systems is detailed. Many more products than men-
tioned were considered, but out-ruled for different reasons such as cost, support
or specifications.

3.1 Requirements

The requirements which have been formed for the measurement system are nat-
urally closely connected to the applications which the network is being used
for. Therefore, the most demanding applications has been gathered and the re-
quirements on resolution and accuracy is therefore derived from their respective
requirements.

3.1.1 CESoPSN

Circuit Emulation Service over Packet Switched Network (CESoPSN) “is a
method for encapsulating structured (NxDS0) Time Division Multiplexed (TDM)
signals as pseudo-wires over packet- switching networks (PSNs)” [39]. Tradi-
tional public switched telephone networks (PSTNs), are inherently circuit switched.
As these networks were digitalized, the natural choice was to use TDM for mul-
tiplexing of multiple analog circuits into a digital one. In Europe, 30 circuits
were bundled together with two control channels into a base connection type, the
2048kb/s E1 connection. As capacities and requirements grew, E1 connections
were later on bundled into 155Mbit/s STM-1 connections, which were bundled
into 622 Mbit/s STM-4 connections and so forth.

Due to the use of TDM, these transmission systems are highly timing-critical.
Data for each multiplexed circuit needs to be available when its time slot is
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reached, which translates to a steady stream of packets arriving at a constant,
non-varying rate when the packet-switched data is decapsulated and transmitted
on the TDM network.

To compensate for the high sensitivity in delay variation, CESoPSN equip-
ment includes a jitter buffer [39]. The addition of the jitter buffer delays the
transmission of outgoing TDM data a configurable time period to the incoming
data from the packet switched network to let the delayed data act as a buffer for
the occasion that the next packet arrives slightly late (due to variation in packet
delay). If the buffer runs out of data, a buffer under-run occurs, the device is
required to send replacement data. This can for example be data generated
from a user-configured pattern or a repetition of the last sent frame[22]. No
matter what is used as replacement data, this will lead to distortion of the voice
signal or data corruption.

To make the system more tolerant for delay variation the jitter buffer can
be increased, but as this inevitably leads to increased delay for the TDM data
transmission, the buffer should be kept as small as possible.

At Tele2, an older SDH transmission system mostly carrying voice and leased
lines runs in parallel with the IP network. However, there is a wish to phase
the aging and expensive SDH system out in favor of the IP network. Tests has
been made where is has been realized that at some instances however, the IP
network does not fulfill the strict delay variation requirements of the CESoPSN
system. Tele2 requires the jitter buffer to be only a few milliseconds long.

3.1.2 Voice over IP

With the introduction of Voice over IP (VoIP) techniques the network quality
requirements increased dramatically as even short-term errors such as packet
loss and delay variation can be noticed by the user.

To compensate for delay variation also VoIP systems utilize jitter buffers
which as mentioned before introduce a delay. With up to 150 ms end-to-end
delay including all delay sources (“mouth-to-ear”) regarded as more or less trans-
parent to the user and over 400 ms unacceptable [1], a buffer quite much larger
than the one used for CESoPSN can be used given that the mean delay is low.

It is up to each VoIP codec to define how to handle lost packets and the
packet rate, which also defines how much voice data, in seconds, each packet
contains. The G.729 codec for example transmits around 20 ms of voice data
per packet and simply replays the voice data from a previous packet when data
is missing [8]. This is however only repeated once, which makes a loss of two
or more consecutive packets detectable to the users. Tele2 wishes to detect all
these potential errors, which sets a limit for the packet rate the measurement
system needs to support.

3.1.3 Results

So what conclusions can be drawn regarding the requirements from the back-
ground given above? As the CESoPSN is highly sensitive to variation in delay
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with the small jitter buffers requested, this is what will define our requirement
in accuracy of measurement.

With a jitter buffer only a few milliseconds long a quite high accuracy is
requested, certainly higher then the one millisecond currently provided. From
these prerequisites, the requirement on accuracy of measurement is set to at
least 100 µs.

As two consecutive packets lost in a VoIP-stream might be detectable to the
user, the system needs to be able to detect a loss of connectivity only this long
during for example reroutes due to a fiber breakage. As many VoIP streams
as previously stated transmit at a rate of 50 Hz, the required measurement
resolution is set to 50 packets per second.

3.2 Evaluation procedure

A key component of any measurement system is the equipment performing the
actual measurements; in this case sending what in here is referred to as mea-
surement probes. A few pieces of equipment has been evaluated according to
the requirements specified in 3.1. Since the most important metric according
to the requirements is delay variation, the primary method used for evaluation
was to have the devices measure the delay variation of a reference connection
known to induce low delay variation and comparing the results. This low delay
variation connection was created by connecting the equipment under test with
a twisted-pair or fiber cable directly.

3.2.1 Measurement setup

In addition to the delay variation accuracy estimation, measurements of other
characteristics are verified by comparing them to a reference system from IXIA
called 400T as it was available at Tele2. Unlike the measurement nodes that are
evaluated, the IXIA system is both initiator and receiver in the same chassis,
thus not having any time synchronization issues. Consequently, it provides a
verified, high accuracy of 40 ns1, but can’t measure the delay between two
distant locations. Therefore a Multi-protocol Label Switching (MPLS) tunnel
was configured in Tele2’s network which provided a real scenario Internet path,
which terminates at the same location in both ends. By running the system
under test and the IXIA in parallel, also the accuracy of realistic round-trip
times could be verified. For the test setup, two of the 400T’s SFP slots were
fitted with LX fiber modules.

3.2.2 Juniper RPM

Juniper “Real-time performance monitoring” (RPM) is a service available in Ju-
niper Networks’ JUNOS operating system [27]. For higher accuracy, some de-

1Not verified; IXIA’s technical documentation is the source for the 40 ns claim
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Test network

Reference (IXIA 400T)

Figure 3.1: Measurement setup for testing real-world delays

Figure 3.2: Juniper Networks EX4200 mounted in the lab

vices can perform packet timestamping in hardware, very close to the wire, both
at the transmitting and receiving device. Thanks to this the (non-deterministic)
time spent on handling packets in the operating system or queues on the device
should not affect the measurement. Juniper’s EX4200 layer 3 switches were the
primary choice as measurement nodes, and three of these were acquired. In spite
of being affordable, they are capable of performing the RPM’s hardware times-
tamping. They were installed in Tele2’s lab using their standard procedures, and
equipped with industry-standard gigabit Ethernet fiber SFPs2. The standard
procedure implies redundant 48V power installation performed by electricians,
a choice of tested software images, and configuration templates. The switches
are shown in figure 3.2. The RPM’s delay variation accuracy was estimated by
running the system over a short wire (in this case, 1 meter of single-mode fiber).
Several different software versions were used, including Tele2’s standard release,
and the latest stable release from Juniper Networks.

Although the 95th percentile of the delay variation was within 200 µs, the
max delay variation during the 2 hour test period peaked at 2500 µs which is well
above what was requested. Another shortcoming is the maximum configurable

2Small form-factor pluggable transceiver (SFP) is a standardized form factor and interface
for hot-pluggable transceivers used extensively in the telecommunication market.
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Initiator Reflector Mean RTT Max. delay variation

SLANG SLANG ≈ 1µs < 1 µs
SLANG RPM ≈ 200 µs ≈ 1200 µs

RPM RPM ≈ 400 µs ≈ 2800 µs

Table 3.1: Evaluation of RPM using SLANG as test bench

packets per second (pps) rate of 1, which is slow enough to mask away some
of the effects of IP networks, and also far from the 50 pps that is needed to
emulate a typical VoIP phone call.

While developing a brand new Linux-based measurement system (dubbed
“SLANG”) as alternative (should commercial off-the-shelf systems prove unsuit-
able), RPM support was added to it. First of all, that would make SLANG
able to use the Juniper switches as reflectors, which would be practical as such
switches are widely deployed within Tele2’s network. Secondly, it would make
deeper analysis of the Juniper RPM possible. More information about the
SLANG system is found in section 4. The RPM protocol was analyzed, using
simple packet analysis tools such as tcpdump and Wireshark3 and by decod-
ing4 the data in a Python script, acting as a simple initiator. The RPM code
was then ported to probed, the daemon5 of the SLANG system responsible of
sending/receiving UDP probes (pings); in other words acting as initiator and
reflector. The RPM code was never shipped in the final version of SLANG;
but kept as reference. Three delay variation measurement tests were executed
(as usual, over a short single-mode fiber) in order to determine the RPM’s
hardware timestamping characteristics. The results are shown in table 3.1 and
suggests that RPM with hardware timestamping on EX4200 has an induced
RTT of about 200 µs and a maximum delay variation of more than 1000 µs,
irrespective of being used as initiator or reflector.

The tests were performed with JUNOS 10.0R1.8, the release that (out of the
ones tested) gave the best results (lowest delay variation). Graphs for the RPM
to RPM test is found in figure 3.3. Although the induced RTT does not present
a problem in itself (it can be compensated for), the maximum delay variation
is troublesome. Juniper Networks were very accommodating and supportive,
and discussions with them confirmed and explained these results. However,
measurement accuracy will not be improved in the EX4200 within a foreseeable
future. As a consequence, the RPM with hardware timestamping on EX4200
switches were not chosen for high-accuracy delay variation measurements.

3A graphical network traffic inspection application; http://www.wireshark.org
4Splitting a C struct into list elements using the unpack() function of Python’s struct

package
5Daemon is the typical Unix/Linux term for an application running as a service in the

background
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Figure 3.3: Juniper Network’s EX4200 results

3.2.3 Cisco IP SLA

The system currently measuring Tele2’s core/transport network consists of Cisco
1800-series access routers, configured solely as measurement nodes. The feature
was initially named Service Assurance Agent (SAA) by Cisco, and later renamed
to IP SLA. It’s part of their Internetwork Operating System (IOS) software, with
the primary function of sending probes6 over various protocols for measuring
delay and delay variation. The results are fetched using the Simple Network
Management Protocol (SNMP) and displayed in line diagram graphs by a system
developed at Tele2.

The primary reason for finding a complement to this system was accuracy
and resolution requirements described in section 3.1. A typical delay variation
graph for a measurement in the Tele2 core network displays a line fixed at either
zero, one or two ms, which is explained by the Cisco IP SLA resolution of 1 ms.
Secondary reasons for developing a complementary system includes, among the
many other feature requests; automatic configuration through integration with
Tele2 systems, validation of Differentiated Services Code Point (DSCP) flags,
and the ability to run continuous tests which doesn’t have to be (automatically)
“restarted” with short delays in-between.

3.2.4 Prosilient Technologies

Prosilient Technologies develops a complete SLA supervision system used for
monitoring core and mobile back-haul networks. They were invited to present
their system, which uses a proprietary clock synchronization protocol to main-
tain a low clock offset between the measurement nodes which permits accurate
(50µs [38]) measurements, even in one-way scenarios. In addition to the usual
one-way and two-way delay and delay variation measurements their system also
support an extensive list of other more specific higher level measurement types.

6A probe can for example be an ICMP echo request (ping)
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As the Prosilient system is a complete solution, it is built to perform more or
less autonomously, something which was shown when it came to integration with
other systems. According to what could be derived from the presentation, the
system would provide the level of auto-configuration which was requested and
provide detailed measurement data from the nodes, but not at the granularity
which was requested.

Partly due to these reasons, but mainly due to high cost, the Prosilient
system was discarded from the list of alternative systems. No real-world testing
of the system was performed.
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Chapter 4

Developing SLANG, a
Linux-based system

As a result of unsatisfactory performance of existing products, the project that
this reports documents evolved into the development of a complete measure-
ment system. The system was dubbed “SLANG” where “NG” initially stood
for Next Generation, suggesting that it will be an upgrade compared to the
current Service Level Agreement (SLA) systems currently deployed. “Slang” is
also the Swedish word for hose. That however, is no abbreviation or symbol for
anything.

4.1 Brief system overview

The project was divided into a few tasks, with defined interfaces. The tasks can
be categorized using a layered scheme.

1. Hardware (Intel 82580). The lowest layer, is the hardware itself. Apart
from a computer (in our case, a low cost Intel Atom server) the hardware
most importantly consists of a network adapter with Intel’s Ethernet con-
troller chip 82580. The network card’s function is, apart from receiving
and sending packets, to provide highly accurate timestamps; the input
data for delay and delay variation calculations.

2. Operating system (Linux). The next layer is the Debian operating
system, a software distribution based on the Linux kernel. In order to re-
liably exploit the network card’s timestamp functions, some modifications
were made on the Linux kernel. These modifications will be detailed in
the upcoming sections; for example section 4.2. To streamline usage and
deployment of the system, the operating system was transformed into a
small software image1 that is easily written to a USB stick from which

1An image is in computer terms the raw binary data of something; commonly a medium
such as a disk
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the computer is booted2, allowing for rapid deployment. The USB stick is
read-only during normal operation, implying reliable operation. Following
the startup, the administrator is presented with a user-friendly adminis-
tration console, simplifying the minimal, yet required, configuration of
SLANG.

3. Measurement program (probed). Similar to the commonly used com-
puter program ping which sends an echo request (ping) to another com-
puter, which responds with an echo reply (pong) while measuring the
delay, a program called probed was developed. It acts as both ping client,
and pong server, and uses Linux’s timestamp API to accurately calcu-
late the delay. The caveats of the timestamp API and 82580 hardware
combined with the demanding functional requirements resulted in probed

being a rather advanced, functionally complete and architecturally sophis-
ticated program.

4. Data collection and interface program (manager). During normal,
continuous monitoring operation, probed is configured by, and outputs
the measurement data to, the manager. The manager stores the measure-
ment information, calculates out-of-order and delay data, continuously
aggregates data into statistics such as average and 95th percentile values,
and makes everything readily available on an XML-RPC3 interface. The
manager accepts complex queries such as dynamic-granularity aggregated
statistics, in order for data collection systems to automatically receive
more detailed information for periods with transient characteristics. It
also accepts configuration requests from a central management server.

5. Central management (SLANG control panel). Individual node config-
uration is a time-consuming and error-prone task. Therefore, a central
management system was developed and integrated with Tele2’s current
node management and IP address management infrastructure (NILS). In
that way, the entire cluster of SLANG nodes are automatically reconfig-
ured upon changes such as the addition of new nodes. The control panel
also displays a real-time view of the SLANG cluster, along with current
measurement information and a 24-hour history view. The control panel
does not collect statistics.

6. Statistics system (ASM). It’s common practice to query network equip-
ment for useful statistics (counters) over protocols such as Simple Network
Management Protocol (SNMP). In the same way, SLA nodes are usually
queried in regular intervals (for example 5 minutes) by a statistics sys-
tem, that summarizes the data, and stores in some kind of database for

2Booting is the process of cold-starting a computer
3XML-RPC and its derivate SOAP are industry-standard protocols for Remote Procedure

Calls (RPC) which has been increasingly popularized with the raise of the Internet. XML-
RPC, hence the name, uses XML and encoding, and HTTP (the protocol of the World Wide
Web) as transport.
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a very long time. Such systems usually contains graphing capabilities;
making the information available in a practical fashion. One of the most
popular is Cacti4, based on RRDtool5. Tele2 however, has their own
statistic system called Automated/AweSoMe Statistical Machine (ASM)
which was extended to interface with the manager’s XML-RPC interface
of the SLANG nodes.

During the remainder of this chapter, these components will be referenced and
described.

4.2 Background

Since long, there has been an SO_TIMESTAMP option for sockets6, instructing
the Linux operating system’s kernel (hereby referred to as just ”Linux”) to add
timestamps to received packets (RX), in order for userland applications to more
accurately know their receive time. The timestamp is generated in the Linux
network code; not in hardware or in the driver. Since then, more sophisticated
methods have evolved.

While researching IXIA’s high-accuracy measurement platform, a Linux
patch adding basic timestamping support for sent packets (TX) was found in
the Linux mailing list. This coincidence gave birth to the idea of SLANG; and
the development of that measurement system. Below are references to Linux’s
mailing list7, giving the chronological background to the hardware timestamping
that SLANG depends on.

On 29 Jul 2008, Octavian Purdila of IXIA sent “net: support for TX times-
tamps” and “net: support for hardware timestamping” to the mailing list to the
mailing list[29, 28]. Although it was not ready for general usage at that time,
it hinted that there might be possible to accurately measure delay with Linux.

On 21 Jan 2009, Patrick Ohly of Intel sent “net: new user space API for
time stamping of incoming and outgoing packets” to the mailing list. In or-
der to support Precision Time Protocol (PTP; IEEE 15888) which depends on
accurate timestamping, Intel added a more generic API for RX and TX times-
tamping to Linux. More specifically, the SO_TIMESTAMPING socket option, and
SIOCSHWTSTAMP ioctl option. It was released in Linux 2.6.30, in June 2009, but
was not ready for general usage. No general purpose network adapters able to
timestamp arbitrary packets existed at that time, and working for Intel; Ohly
used a prototype network adapter[30].

4Cacti is an open-source web-based data acquisition, storage and graphing system; see
http://www.cacti.net

5RRDtool is a widely used, open-source, lightweight, data storage and graphing program
suite by Tobias Oetiker; see http://oss.oetiker.ch/rrdtool/

6A socket(), used to create an endpoint for communication, is the de-facto API for network
communication

7The mailing list is the primary development forum for Linux
8PTP is a highly accurate network time protocol for computers
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On 12 Feb 2009, Patrick Ohly of Intel sent “igb: infrastructure for hard-
ware time stamping” to the mailing list. It was an initial patch for hardware
timestamping for Intel’s network adapters.

On 19 Sep 2009, Christopher Zimmermann sent “SO TIMESTAMPING fix
and design decisions” to the mailing list. There are a couple of letters from
Mr. Zimmermann, making various improvements to the API, which was partly
broken at that time.

On March 2010 Intel released the 82580 Ethernet controller, and the first
general-purpose network adapter to support RX and TX timestamping of all
(arbitrary) packets.

On 4 Jul 2010, Richard Cochran sent “phylib: add a way to make PHY time
stamps possible” to the mailing list. It was patches improving hardware (PHY,
physical devices) timestamping, and also a Linux compilation configuration op-
tion CONFIG_NETWORK_PHY_TIMESTAMPING which is needed to enable it. More
or less ready for general usage, and released 20 October with Linux 2.6.36.

Only weeks after Linux kernel 2.6.36 was released, it became apparent to the
members of this project that an alternative solution to commercial measurement
systems was needed. The timing couldn’t have been better. During a few
months, the SLANG system was realized, along with a few patches for Linux.

On 3 Feb 2011, Anders Berggren and Lukas Garberg of this project sent
“[PATCH] fixing hw timestamping in igb” to the mailing list. Initially the
SLANG project’s probed application used Intel’s igb driver (with Linux 2.6.36),
since Linux’s built-in driver had severe timestamp bugs (the time from the card’s
internal clock didn’t reach user-land). Unfortunately, Intel’s version had a few
quirks as well, such as frequent RX timestamp for packets arriving too close to
each other. Being a quite serious bug for this project, the problem was being
analyzed and debugged. Linux’s version was chosen for development, since it is
the one that comes with most Linux distributions, and since Intel’s version was
not compliant with the latest Linux version (2.6.37) as of February. The patch
makes it possible to activate hardware timestamps (solving the clock-source
bug), and fortunately Linux’s igb version didn’t inhibit the RX timestamp bug.
Consequently, all the code inside probed dealing with RX timestamp abnormal-
ities was removed. The removed code was complicated, as it tried to mask not
only missing, but rather incorrect RX timestamps. The patch was accepted.

On 23 Feb 2011, Anders Berggren and Lukas Garberg of this project sent
“[PATCH] net: TX timestamps for IPv6 UDP packets” to the mailing list. Mar-
cus D. Leech pointer out in November 2009 that TX timestamps doesn’t work
with IPv6. IPv6 deployment has accelerated as of the IPv4 address pool now
actually running out, and therefore support for the new Internet protocol was
a requirement for SLANG. Inspired by Mr. Leech’s work, a patch was devel-
oped. Unfortunately, it was not implemented in the same fashion as for IPv4;
since the required control structures was not present in the IPv6 “append” func-
tion. Therefore, the timestamp socket lookup was performed inside the actual
“append” function. The patch was accepted.
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4.3 Comparing hardware and kernel timestamps

Tests were performed that compared Linux’s ping (figure 4.1), probed with
kernel timestamps (figure 4.2), and probed with hardware timestamps (figure
4.3). The results of the hardware timestamp test with Intel 82580 controllers
are many times better than anything else tested. The jitter of a short wire
was reported as only 8 ns, which is also the resolution of the 82580’s oscillator.
Initial testing suggested that kernel-based timestamps (in the network adapter’s
driver) would be accurate enough according to the requirements. Therefore, it
was implemented throughout in SLANG. It was however not chosen as preferred
method in the final system; mainly because of two reasons:

1. The accuracy of the hardware timestamps are many orders of magnitudes
higher, motivating the relatively low cost of such a network adapter.

2. The confidence level of the measurements are much better for hardware
timestamps. In the same way that kernel-based timestamps are more
accurate than user-land timestamps9, there is a much higher theoretical
probability of the kernel not being able to generate the timestamp within a
reasonable time, compared to the hardware of the network adapter. Effects
suspected to originate from CPU power saving features, the interrupt/poll
characteristics of Linux’s New application programming interface (NAPI)
combined with the fact that modern network adapters may generate only
one interrupt for several packets[30], and the inaccuracies of the computers
clock were observed in the kernel timestamp results. See figure 4.2, where
the maximum delay variation is about 250 µs, whereas the 95th percentile
is at 20 µs. Although it might be possible to remedy or mask away most
of these infrequent but very inaccurate timestamps, it was decided that it
was not worth the work.

It’s noteworthy that no drivers implement kernel TX timestamps[10] as of
2011, despite of being available for many years[29] and as simple as adding
the line skb_tx_timestamp(skb); to the transmit function; pointed at by
.ndo_start_xmit.

4.4 The operating system

Tele2 declared several requirements that would apply if a system was devel-
oped in-house rather than purchased. Many of those are listed in section 4.5.1.
One that applies directly to the hardware and operating system concerns main-
tainability. Network equipment such as routers used in the telecommunication
sector differs from common computing platforms in terms of providing defined
piece of work they are supposed to perform very well; and their administration

9User-land processes are generally not guaranteed time slices by the kernel, and the exe-
cution path is longer and less predictable
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Figure 4.1: Linux’s ping command results
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Figure 4.2: Linux’s kernel timestamp results
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Figure 4.3: Linux’s hardware timestamps with 82580 results
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and maintenance characteristics are usually adjusted accordingly. Configura-
tion interfaces are stable in terms of syntax, software releases are less frequent,
and in cases of underlying operating systems10 the complexity of those are nor-
mally hidden11. In the same fashion, Tele2 demanded that the system should
not require Linux administration experience from field personnel, nor require
any significant maintenance once deployed. First of all, it was decided that the
SLANG nodes should contain as few moving parts as possible. When also con-
sidering the production of the nodes, it was decided that USB memory sticks
should be used instead of hard-drives. USB sticks are easy to duplicate thanks
to their USB interface, and simply writing the SLANG software image to the
stick should be the only step in the installation procedure. One drawback of
USB sticks is that they typically survive far fewer write operations than ordinary
hard-drives, thus requiring the operating system to run with a read-only disk.
All run-time data is stored on a so-called Random-access memory (RAM) file
system which, hence the name, never stores the data on a persistent memory.
The complexity of an entire Linux operating system is mostly hidden by pre-
senting the administrators with an easy-to-use graphical configuration console
only exposing the features that are relevant to an SLANG node.

The most common technique for running Linux on a read-only medium is to
load the entire operating system off an image file onto a large RAM file system
disk, or providing a so-called union file system that writes changes to RAM.
Although having the advantage of the operating system being able to modify files
that it expects to be writable, it has the disadvantage of requiring more RAM
compared to simply stating that the entire disk is read-only. Since the SLANG
nodes requires large amounts of RAM in order to make raw measurement data
available for some time, and also in order to aggregate the data, it was decided
that the SLANG nodes should use a pure read-only file system. The primary
Linux operating system used at Tele2 is Debian12, which, like most other Linux
distributions, does not provide a read-only mode. An Internet guide13 was used
to get Debian onto the USB stick. In short, a partition was created with fdisk

and mkfs which is mounted. Then, debootstrap is executed on the mount
point. chroot to it. apt-get is used to get required packets such as kernel and
grub; the boot loader. An /etc/fstab is written, with the disk referred by it
is Universally unique identifier (UUID) in order to work irrespective of which
BIOS drive number is assigned. Also /boot/grub/grub.cfg is configured with
UUID as kernel “root” argument. In order to operate read-only, /etc/mtab is
symbolically linked to /proc/mounts and important folder such as /var/run

and /tmp is linked to a RAM disk mounted by adding tmpfs <dir> tmpfs

rw 0 0 to /etc/fstab. Once ready, unused space is cleared with /dev/zero

10Such as FreeBSD in the case of Juniper Networks’ JUNOS, QNX for Cisco IOS-XR and
Linux for VMware ESX (references are scarce)

11System administrators dealing with both servers (running for example Linux) and network
equipment (such as routers or switches) most likely agrees with this statement

12Debian’s web page is http://www.debian.org/
13Debian USB guide at http://www.func.nl/community/knowledgebase/how-run-debian-

usb-stick

30



> /zero; sync; sleep 2; sync; rm /zero in order for the compression of
the software image created with dd if=/dev/disk1 bs=1048576 count=1024

| gzip > debian6.img.gz to perform better. The system was left running for
a few hours with the disk mounted writable, in order to determine which files
had been changed, and possibly needed to be linked to the RAM disk.

The simplified user administration was written as a shell14 script called
ui.sh and uses the dialog command to draw the semi-graphical interface.
This design paradigm allows for rapid development, but has the disadvantage
of re-drawing the entire screen for each update; which is sub-optimal for slow
terminals such as RS-232. The shell script interfaces with Debian’s standard
configuration files such as /etc/network/interfaces and /etc/resolv.conf

in a non-destructive manner, in order for changes done manually in any of these
files to be persistent.

4.5 The measurement program (probed)

The function of probed is similar to that of the commonly used ping program,
available in all modern operating systems. Early in the design phase the probed
program was even called hwping; suggesting a similar function to ping, but with
increased accuracy thanks to hardware timestamps.

In the case of ping, a packet of type ”echo request” (ping) is sent using
the Internet Control Message Protocol (ICMP) protocol, recording the round-
trip time until (if) a response of type ”echo reply” (pong) is received. In order
to match pings to pongs, sequence numbers are used. All modern operating
systems responds to ping; meaning that they are in fact reflectors; responding
with echo replies to echo requests. In a measurement context, the ping program
is the initiator.

Although the function of probed could be roughly described in the same way,
there are some notable differences. Most importantly, probed was designed
to use more accurate timestamps for calculating the round-trip time (RTT).
That implies that one either have to incorporate accurate timestamps into the
operating system’s ICMP reflector code, or develop a new (but similar) protocol.
Since incorporating code into an operating system is a daunting task, and a
ping/pong application is among the more simple one could design, the choice to
develop a new protocol was obvious. In other words, an initiator (client) and a
reflector (server) was to be developed. As it turned out; they were implemented
in the same program; probed.

When calculating the RTT based on timestamps, there are four points in
time involved. These are usually called T1, T2, T3 and T4, and depicted in
figure 4.4. T1 is the TX timestamp of the ping, sent from the initiator. T2 is
the RX timestamp of the ping, when received by the reflector. T3 is the TX
timestamp of the pong, sent from the reflector. T4 is the RX timestamp of the
pong, when received by the initiator. Since the RTT = (T4 − T1)− (T3 − T2) it

14A shell is the standard terminal of a Unix-like operating system, and can also be used as
an interpreter shell program code
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Figure 4.4: Timestamps for in ping/pong measurement

is apparent that the clocks of the initiator and reflector can be unsynchronized
without affecting the RTT; what matters is during how long time the packet was
away from the initiator and spent inside the reflector, respectively. This simple
algorithm is found in the Network Time Protocol (NTP)[25] among others, and
detailed in section 2.2.3.2.

4.5.1 Reviewing the requirements

Before discussing the design and implementation of probed, it is important
to understand the requirements of the SLANG project, and the limitations of
current hardware timestamp implementations. The requirements relevant to
probed are:

1. An SLANG node has to be able to operate as both initiator and reflector,
in order for flexible full-mesh15 configurations.

2. An SLANG node has to be able to receive a configuration of the central
management system (be reconfigured) without interrupting measurement
operations.

3. Given the size of Tele2’s network, that a full-mesh configuration has to be
possible, and that each measurement should support at least 50 packets
per second (pps) in order to simulate a typical voice call, an estimation of
the total packet rate a node has to cope with suggests as much as 10,000
pps. While not being an absolute requirement, it is the performance target.

4. It should be possible to run the measurement program (probed) stand-
alone; like ping. Therefore, it has to remember the state of sent packets,
contain some kind of presentation mode, and user-friendly command-line
arguments.

5. The measurement program should, using a best-effort scheme, try to de-
termine if the ping or pong was lost in case of packet loss. One-way trip
times are not a requirement since the routing in Tele2’s core network is
essentially symmetrical, but would be desirable.

6. The system should support Internet Protocol version 6 (IPv6); the evolu-
tion (and eventually; replacement) of the Internet protocol.

7. It should be possible to configure and verify Differentiated Services Code
Point (DSCP) for measurements.

15Full-mesh is the topology where all nodes have connections between each other
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4.5.2 Input for design considerations

The nature of the timestamp API and the Ethernet controllers in question de-
fines a number of properties and constraints that has to be taken into account
during design and implementation.

1. Linux’s timestamp implementation for both kernel and hardware times-
tamps (the SO_TIMESTAMPING socket option) provides the TX timestamps
by making a copy of the sent packet available on the socket’s error queue,
with the TX timestamp being the RX timestamp of that packet. There-
fore, every sendto() has to be followed by a recvmsg() loop trying to
obtain the TX timestamp before sending anything else on the socket.

2. The timestamp support in generally available network adapters is scarce,
and in those that support it, it is simply a consequence them being Pre-
cision Time Protocol (PTP, IEEE 1588) enabled. Some controllers that
support PTP (for example Intel 82576) does not support per-packet times-
tamps; having only a few registers for the most recently received packets
matching the structure of PTP packets. Others (for example Intel 82574)
supports PTP but appear to be missing the essential timestamp infrastruc-
ture in Linux. The controller used in this project is called Intel 82580, and
supports per-packet timestamps for any incoming (RX) packets. In prac-
tice, not all drivers that were tested implemented that well, resulting in
unpredictable results. It does however provide the advantage of not having
to generate fake PTP-like packets in order to get them timestamped.

3. The Intel 82580 controller have only one timestamp register for outgoing
(TX) packets, and consequently it is essential that all transmission of
packets that should be timestamps is done sequentially; otherwise packets
might overwrite each other’s timestamps.

4. In addition to the previously noted fact that Ethernet controllers usually
doesn’t support timestamping of arbitrary packets, that also applies to
Linux. As noted in section 4.2, patches had to be developed in order to
TX timestamp IPv6 packets. The fact that PTP uses User Datagram
Protocol (UDP) as transport suggests that UDP packets are in fact times-
tamped. That can be verified by noting that the TX timestamp check
sock_tx_timestamp() is in fact executed in Linux’s net/ipv4/udp.c.

5. In order to calculate one-way trip times, the TX timestamp of the initiator
(sender) has to be compared with the RX timestamp of the reflector (re-
ceiver). Therefore, the accuracy of that calculation will never be greater
than the accuracy of their relative clock synchronization. Unfortunately,
the accuracy of Network Time Protocol (NTP) maintains a time within 10
ms, and as good as tens of microseconds under ideal conditions[24]. That
does not meet the requirements. PTP was designed to achieve greater
accuracy, within the sub-microsecond range. There are however three
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issues. The PTP accuracy greatly depends on the quality of the connec-
tion; and that is what is being measured. Secondly, as a consequence of
the single TX timestamp register of the Intel 82580, probed and some
PTP program cannot be running simultaneously. The most real problem
however, is that there were no stable, working PTP implementation for
Linux at the time. Highly accurate GPS clocks could have been suitable
for one-way trip time calculations, if it wasn’t for the fact the data cen-
ters usually have very bad reception of aerial signals. Another alternative
could have been the time synchronization mechanisms in Wide area net-
work (WAN) protocols such as Synchronous Optical Networking (SONET)
and Synchronous Digital Hierarchy (SDH). Unfortunately IP does not pro-
vide time synchronization, and although these underlying WAN data link
protocols in fact do so, that information is lost whenever IP traverses
diverse data link networks. Simply put, that clock synchronization is
never propagated to LAN equipment such as the SLANG nodes, which
are Ethernet devices. Finally, it is noteworthy that the internal clock
of the computer was found to introduce inaccuracies that were not neg-
ligible (in the range of 1 µs) when comparing measurements using the
82580’s oscillator directly (SOF_TIMESTAMPING_RAW_HARDWARE) compared
to transforming the oscillator-generated timestamps into system (wall)
time (SOF_TIMESTAMPING_SYS_HARDWARE) which would have been the case
when using NTP, PTP or GPS time synchronization. One-way trip times
were not implemented in the final version of the system.

4.5.3 Proposing and evaluating designs

When analyzing the requirements and constraints together with other aspects
of the project such as the participants programming language preferences, the
following outline was formed:

1. Given that one SLANG node should be able to operate as initiator (client)
and responder (server) at the same time, and that transmits with sendto()

has to be performed (system) synchronously in order to get TX times-
tamps, the client and server were implemented in the same program;
probed. That is rather unusual; most network applications have one server
program, and clients are multiple instances of a client program.

2. As a consequence of UDP being used as transport, and the synchronous
sendto() limitation, only one socket will be used; for all sessions, both
client and server. The typical client/server approach is to use the state-
ful, connection-orientated Transmission Control Protocol (TCP), which
enables the main server process to accept() a client into a new socket,
which can be handled in a separate thread or process fork(). Additionally,
one typically tries to separate the client and the server. When handling
multiple clients within one process of execution, it is important that all
operations are non-blocking. Otherwise, one client could stall the server,
and thus denying all other clients meanwhile. An example of a blocking
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function is recv(), which normally blocks until data is received. One way
of having multiple threads or fork() processes handle individual clients
on a UDP socket would be to use the MSG_PEEK receive option, and only
receive those messages destined for the particular client process. That
would however cause many unnecessary recvmsg() calls, which doesn’t
scale well. Also, the sendto() still have to be performed synchronously
(because of the TX timestamps), which would require something like lock-
ing or message passing, adding to the complexity. The final version of
probed handles the UDP socket in one single process, which is entirely
multiplexed with select() waiting for pings, pongs and timestamps, and
sending pings in defined intervals limited by the select() timeout.

3. The IPv6 requirement implies that so-called dual-stack support is needed.
That is, supporting both IPv4 and IPv6 simultaneously. Because of the
“one socket design”that was proposed above, it is fortunate that the“IPv4-
mapped IPv6 addresses”[18] exists, and is supported by Linux (controlled
by the IPV6_V6ONLY socket option). It allows both protocols to be oper-
ated on the same socket, with IPv6 native, and IPv4 being represented
as ::ffff:X.X.X.X. The program then has to perform all socket oper-
ations for both IPv4 and IPv6, such as enabling both IP_RECVTOS and
IPV6_RECVTCLASS in order to fully support DSCP. When browsing packet
headers with CMSG_NXTHDR() types in both level IPPROTO_IP and IP-

PROTO_IPV6 have to be considered.

4. Since TX timestamps are received on the socket’s error queue after trans-
mission, the timestamp can’t be embedded into the sent packet. This
represent a problem for T3, the TX timestamp of the pong. See figure 4.4.
Somehow, the timestamp has to reach the initiator, in order for it to calcu-
late the RTT. Sending an additional UDP packet with the T3 (and possibly
T2) timestamp would be straightforward to implement, but introducing a
very real risk of “timestamp loss”. That is, the pong was received, but no
RTT could be calculated. In cases of disturbances such as packet loss, the
timestamp loss would be even greater, which is very unfortunate. TCP
on the other hand, is a transport protocol offering connection-orientated
reliable communication with features such as retransmission, and was cho-
sen for timestamp deliver instead of trying to implement reliability onto
UDP. Introducing another protocol for timestamp delivery inevitably adds
to the complexity. One goal during the design was to maintain the sim-
plicity of the code. The reflector (server) code is entirely stateless; simply
responding to pings. The initiator (client) code is somewhat more com-
plex, but yet contained within the main, and only, process of execution.
Fortunately, a TCP server can be easily implemented without spawning
new processes with fork(); only keeping track of the highest client file
descriptor as returned by accept() and matching client addresses to file
descriptors using getpeername(). Therefore, it was decided that the re-
flector part of the program should act as TCP server, remaining stateless.
When a UDP ping arrives to the reflector, it is RX timestamp is recorded,
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a UDP pong is sent to that client, it is TX timestamp is recorded, and
the timestamps are sent to the client address by finding it is file descriptor
using getpeername(). It would have made sense to have the reflector act
as a TCP client instead; as that would have effectively eliminated race
conditions between the client’s UDP ping and TCP connect(). Also, the
reflector is the timestamp sender, and would fully appreciate the state of
the TCP connection (regarding re-connects, etc.). Now, although a TCP
client is possible to implement in a non-blocking fashion as well, imple-
menting that into the reflector would dramatically increase the size of it
is state machine; keeping track of the state of all TCP connections for all
client sessions. Further, the introduction of network address translation16

(NAT)[11] has consequently led to a best-practice of “not connecting back
to the client from the server” for client/server applications. Old proto-
cols not adhering to this best-practice such as the file transfer protocol
(FTP)[35] have difficulties traversing NAT networks, which has resulted
in new protocol revisions[6]. It would not make sense to design a new pro-
tocol, incompatible with NAT. Therefore, it was decided that the initiator
(client) should contain the TCP client. It was however not compelling
to handle the many states of a TCP connection, for all client sessions
(probed supports multiple initiator sessions), within the non-blocking,
single-process initiator code. By moving the TCP clients to their own
processes using fork(), they can operate in the blocking fashion that
TCP’s connect() was designed for. By doing so, it was possible to avoid
multiplexing between the TCP clients (all clients have their own process)
nor introduction of blocking function calls into the non-blocking main pro-
cess. During program start-up, the initiators’ TCP clients connect() to
the reflectors’ TCP servers, waiting for timestamps, and when received,
delivering those timestamps to the main process using a pipe(). In order
to avoid ping/connect() race conditions (when the ping being sent before
a TCP connection is established) the continuous ping transmission is not
started until a “hello” has been received from the reflector’s TCP server.
Otherwise, most client sessions would report timestamp errors for the first
pings, whenever the configuration is reloaded.

5. Two other design proposals, opposing the one previously described, were
evaluated. The first was to streamline probed by moving all complex code
such as timestamp delivery and client states (matching pings to pongs,
calculating RTT, detecting duplicates and timeouts) into a high-level lan-
guage process such as the manager. Using that design, probed would
simply send, receive and timestamp UDP ping and pong packets. The
pings and pongs would be delivered as raw data to the manager. One
great motivation for doing so, is that the programming language “C” that
probed is written in is rather outdated, fiddly and prone to bugs com-
pared to higher-level languages such as “Python”. The two main reasons
for not realizing that design, were that the requirement of being able to

16NAT was invented as a temporary solution to the problem of IP address exhaustion
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run probed stand-alone like ping would be slightly crippled, and that the
immense amounts of data that the measurement sessions can possibly pro-
duce was difficult to elegantly coop with given the additional layers and
levels of abstraction that the design proposed. The layers of abstraction
included classes for ping/pong data, holding state in a relational database,
and delivering timestamps using XML-RPC. The second design proposal
was to use “C++” as programming language for probed, perhaps using
threads. “C++” contains many constructs for higher-level abstraction,
and reduces programming efforts in creating for example lists and binary
trees. Threads allows for simplified sharing of variables between different
threads of execution and elegant locking mechanisms. The primary rea-
son for not using “C++”, was that the finally chosen “C and fork design”
was evaluated prior to “C++ and threads design”. Since the former was
found fitting, the extra work of rewriting portions of the code was deemed
unnecessary.

4.5.4 Using Linux’s timestamp API

The purpose of probed was to enable very high accuracy delay measurements,
which requires highly accurate timestamps. However, when running on an off-
the-shelf Linux operating system, only the user-land timestamp mode is avail-
able, because the necessary API and hardware infrastructure is most likely miss-
ing (at least as of 2011). The background to Linux’s SO_TIMESTAMPING is de-
scribed in section 4.2, and this section will focus on what is necessary to enable
hardware timestamps. These observations are derived from Linux’s Documen-

tation/network/timestamping.txt and PTP implementation[7].
For both kernel and hardware timestamps, the kernel will most likely have to

be rebuilt, since the CONFIG_NETWORK_PHY_TIMESTAMPING kernel configuration
option is disabled by default. The option is available from version 2.6.36 and is
still available in 2.6.38.

One patch developed during this project called “[PATCH] fixing hw times-
tamping in igb”17 is required in order for hardware timestamps with Intel 82580
on Linux 2.6.37 to work. It has been applied, and will be shipped with future
Linux versions. The patch is included in appendix listing A.1.

Another patch also developed for this project called “[PATCH] net: TX
timestamps for IPv6 UDP packets”18 is required in order to use kernel or hard-
ware timestamps with IPv6 on Linux 2.6.37. It has been applied as well, and is
included in listing A.2.

There are, as of version 2.6.38, no drivers supporting kernel TX timestamps.
It’s however simple to enable it for the desired network controller manually,
by adding a line of code to the “start xmit” (pointed at by .ndo_start_xmit)
function in the driver. The exact location of the code

skb_tx_timestamp(skb);

17Archived at http://marc.info/?l=e1000-devel&m=129673051106564&w=2
18Archived at http://marc.info/?l=linux-netdev&m=129841103607145&w=2

37



in the function does matter, both in terms of accuracy and functionality. A safe
bet for reliable operation at the expense of accuracy is to place it close to the
top of the function. As of version 2.6.38, there is however still a trivial “bug”
causing a compile error if one does not also add

EXPORT_SYMBOL_GPL(skb_clone_tx_timestamp );

to net/core/timestamping.c. The kernel timestamps are however not used
in the final version of the SLANG platform, and the kernel shipped with the
SLANG node system image does not support kernel timestamps for any drivers.

All timestamp operations are performed within probed’s tstamp.c source
file, including Linux’s net_tstamp.h. The three timestamp modes (hardware,
kernel and userland) have their respective functions for enabling, and if a more
demanding mode (hardware) fail to initiate, probed automatic falls back to a
less demanding mode (kernel).

To enable hardware timestamps, two system calls are required. The first acti-
vates hardware timestamps on the hardware itself by ioctl() with SIOCSHWT-

STAMP on the socket with a struct ifreq as request data, with the adapter
name (such as eth0) as ifreq.ifr_name and a struct hwtstamp_config as
ifreq.ifr_data. For the Intel 82580 controller, the hwtstamp_config’s tx_type
should be set to HWTSTAMP_TX_ON for timestamping of arbitrary packets and the
rx_filter to HWTSTAMP_FILTER_ALL for per-packet timestamping. The sec-
ond system call activates RX and TX timestamps on the socket, in order for
Linux’s network stack to determine which packets should receive timestamps,
and which should not, by setsockopt() option SO_TIMESTAMPING on protocol
level SOL_SOCKET with the masked value of SOF_TIMESTAMPING_TX_HARDWARE,
SOF_TIMESTAMPING_RX_HARDWARE and SOF_TIMESTAMPING_RAW_HARDWARE.

To read (extract) the timestamp from a packet, it has to be received with
recvmsg(). By iterating the struct msghdr with CMSG_NXTHDR() looking for
the type SO_TIMESTAMPING on level SOL_SOCKET and casting that value to

struct scm_timestamping {
struct timespec systime;
struct timespec hwtimetrans;
struct timespec hwtimeraw;

};

the timestamp as generated by the network controller’s oscillator is obtained in
hwtimeraw. For received (RX) packets, that is basically it. For sent (TX) packet
however, the process is somewhat more complicated. Following the sendto(),
the TX timestamp has to be obtained before sending again. The timestamp is
made available by looping the original back to the socket’s error queue, with the
RX timestamp of that packet being the TX timestamp of the sent one. Instead
of having to create a queue for packets awaiting transmission, each sendto()

is followed by the blocking19 function tstamp_fetch_tx() trying to obtain the
timestamp. That is acceptable, since the timestamp is made available “very
quickly”. The function performs a “read” select() with a short timeout on the

19Blocking indicates that no other functions in the process takes place during that time;
in this case resulting in the operating system having to queue RX packets until the function
returns
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Figure 4.5: Protocol communication

UDP socket; blocking until the timestamp arrives. The reason for not calling
recvmsg() directly, is that a read on the error queue (flag MSG_ERRQUEUE) is
non-blocking, and would return EAGAIN directly if the timestamp was not im-
mediately available. Running recvmsg() in a loop until a timestamp is received
would result in busy-waiting 20. An effect arising from the “read” select() is
that it is triggered by RX packets and real errors as well, therefore requiring
an outer loop with a gettimeofday() based timeout. Errors are differentiated
from timestamps by checking that ee_origin is SO_EE_ORIGIN_TIMESTAMPING.

4.5.5 Protocol

The protocol was specified early in the design phase, and was never altered
throughout the project duration. It’s deliberately simple, because it addresses
an isolated, defined, limited problem. Also adding to it is simplicity is the fact
that it is not at all extensible or portable, since it was deemed unnecessary.
Changes required by future extensions could be added as additional fields at
the end of the structure, but padding, alignment and endianess issues has to be
solved with an updated probed version whenever portability is needed.

As described in section 4.5.3, the initiator sends a ping (over UDP) to the
reflector, which responds by sending a pong (over UDP) and the two timestamps
T2 and T3 (over the TCP session initiated by the initiator).

UDP is being used for the measurement packets (ping/pong) in order to
benefit from UDP’s level of abstraction, while escaping TCP’s reliability and
ordering features which would mask effects that are being measured. Figure 4.5
illustrates the principle by which the protocol operates, and the packet payload
for both ping, pong and timestamp packets has the following structure:

#define DATALEN 48
#define TYPE_PING ’i’
#define TYPE_PONG ’o’
#define TYPE_TIME ’t’
#define TYPE_HELO ’h’

struct packet_data {
char type;
uint32_t seq;
uint32_t id;
struct timespec t2;

20Busy-waiting and spin-locking are related, normally referring to the process of waiting for
a condition by checking repeatedly, wasting resources in a multi-tasked environment
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struct timespec t3;
};

The first field (8 bits; 1 byte) is the packet type; being one of the TYPE_ defines.
In future revisions it could be migrated to an enumerated type (enum). The
character type was inherited from the development and debugging phase, as it
allows one to operate the protocol using simple tools such as “netcat”21. The
next field (32 bits; 4 bytes) is the sequence number; used to match pings, pongs
and timestamps. The following field (32 bits) is the measurement session iden-
tification, which allows for differentiation between several measurements from
the same IP address and port. The last two fields (128 bits; 16 bytes each on
Linux for x86-6422) contains one time_t and one long int. The time_t equals
to a long int on most operating systems, such as Linux23. The size of the
struct is declared to 48 bytes by DATALEN, which holds true for probed compiled
on a Linux for x86-64 with the GNU C Compiler (GCC) using the flags of the
included configure script. Simply adding the sizes of the structure members
gives 41 bytes; with the extra 7 bytes being compiler and platform dependent
padding added in order to speed up memory accesses[36]. Both alignment (nor-
mally 4 or 8 bytes) of the members and last member padding with the number
of bytes required for the structure size to be a least common multiple of the
size of the largest member[43] may affect the size. As noted earlier, the protocol
should be improved if any portability is desired. The packet payload fits without
one UDP packet with a great margin. No payload size option exists for the time
being.

There are two reasons for including the T2 and T3 timestamps in all packets.
First of all, the same packet structure can be used for all packets. Secondly,
it would allow for future controllers with the hypothetical possibility of writing
TX timestamps into sent packets to operate without the TCP session.

4.5.6 Client state

In section 4.5.3 the decision to handle client states in probed was motivated.
The client state is a broad term for all logic required to match ping, pong and
timestamp packets to each other in order to detect timeouts, duplicates, DSCP
errors, calculate delays, and so on.

Tests indicated that early versions of the igb driver failed to match RX
timestamps to received packets in situations when two packets arrived very close
to each other. These errors presented themselves as the first packet receiving the
timestamp of the second packet, and the second packet receiving no timestamp
at all. Therefore, early versions of probed included additional client state logic
in order to mask these errors, by being able to “invalidate” timestamps for
previous packets. For example, if probed (operating as a reflector) detects a

21Netcat, invoked with nc, is a simple tool for sending and receiving TCP and UDP packets
22x86-64 is the extension name for 64-bit “Intel” (x86) architecture; also referred to as “x64”
23Verified by compiling and running sizeof (time_t); or by searching the include headers:

Linux defines it from __time_t in time.h defined from __TIME_T_TYPE in bits/types.h defined
from __SLONGWORD_TYPE in bits/typesizes.h defined from long int again in bits/types.h
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missing T2 (RX) timestamp on a received ping, it assumes that the previous
ping’s timestamp was invalid, and sends an additional timestamp packet for
the previous ping (to the client that ping originated from, with the previous
sequence number). The RX timestamp error detection was scrapped in the final
release, but introduced the first revision of the client state machine keeping
track of the current pings in transmission. Consequently, other approaches not
explicitly holding state for pings were never realized.

The client state machine is found in client.c and implements sys/queue.h’s
linked list as temporary storage, with a bit-mask indicating received pong/times-
tamp and DSCP error. Whenever a ping has received both ping and timestamp,
or the timeout has been reached, one of the following statuses are reported on
the terminal or FIFO API, depending on operation mode:

#define STATE_OK ’o’ /* Ready , got both PONG and valid timestamp */
#define STATE_DSERROR ’d’ /* Ready , but invalid ToS/traffic class */
#define STATE_TSERROR ’e’ /* Ready , but invalid timestamps */
#define STATE_PONGLOSS ’l’ /* Ready , but timeout , got only timestamp , lost PONG */
#define STATE_TIMEOUT ’t’ /* Ready , but timeout , got neither PONG or timestamp */
#define STATE_DUP ’u’ /* Got a PONG we didn ’t recognize , DUP? */

The many states are partly explained by the fact that the pong and timestamp
are delivered in separate packets, over separate protocols, thus increasing the
number of result combinations. There is however no distinction between a lost
timestamp (normally caused by the TCP session not delivering it properly) or
an invalid timestamp (possibly caused by the network controller or kernel failing
to produce timestamps). The DSCP error is triggered if the pong is received
with a DSCP value, the six most significant bits of IPv4’s type of service (ToS)
and IPv6’s traffic class field, is different from the one in the sent pong. The
most common cause of a DSCP error is that a router in the path has reset
the value. All client results are handled in the main (UDP) process, rather
than in the client-specific fork() processes in order to minimize inter-process
communication.

The client sessions are maintained in a separate linked list, built from the
XML configuration file. When the main processes receives the signal “HUP” a
flag is raised requesting a configuration reload as soon as possible. The reason
for only raising a flag upon signalling rather than reloading the configuration
momentarily, is to reduce the risk of crashes due to functions and calls not
being “signal safe”24. The configuration reload kills all fork() client processes,
empties the result and session lists, re-populate the session list based on the
XML file, and fork() new client processes based on the session list. Therefore,
information about pending pings are lost during reload. Since round-trip times
are short, normally shorter than the interval between pings, very little (if any)
data is lost in reality. It’s however unfortunate that the rare case of returning
pongs for pings that were deleted will be erroneously reported as duplicates.
Future versions may contain a duplicate threshold to deal with that issue.

24Since signals interrupt the process execution flow, what can be safely done inside a signal
handler is limited
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4.5.7 Static code analysis

Because probed is never restarted during normal operation, and that the SLANG
appliances ideally should not be rebooted either, it is important that probed

runs stable and without memory leaks. To the highest possible extent, dynamic
memory allocation has been avoided; only leaving host name resolving with
getaddrinfo(), malloc() of items in the two linked lists, and data fetched
with xmlNodeGetContent(). The size of the linked client result list is what’s
allowed to affect the memory consumption during operation; and is limited by
the ping timeout (of 10 seconds in the current version). On the SLANG appli-
ances, probed has been using 1032 kB25 of physical memory constantly during
several weeks of continuous operation, and 504 kB per client fork().

With the intention of finding memory and storage bugs, the lint26, (static
code analysis) tool SPlint27 was applied to the code base from the very begin-
ning. Because it requires annotations added as comments in the code in order
to properly interpret many constructs, it has assisted in preventing numerous
programming mistakes. SPlint did not perform flawless however, and required
meta-state annotations as a consequence of not being able to parse some system
headers. Different combinations of dependencies and incompatibilities forced
separations such as the unix.c file, containing wrapper functions for functions
and macros that requires SPlint’s Unix library; which was incompatible with
system headers required by other files. Also adding to the large number of
annotations is the fact that it didn’t properly interpret library macros and func-
tions such as libxml2’s xmlFree() and queue.h’s linked list.

4.5.8 Program flow at source code level

Whereas reading the generously commented and documented source code pro-
vides the most accurate rendition of the workings of the program, the simplified
flow chart in figure 4.6 on the following page will be used in this section.

During program startup, some choices are made by the argument parser. The
first operations however, is to initiate logging capabilities, and the bind_or_die()
function that configures two socket (UDP for ping/pong and TCP for times-
tamps) with all required socket options required for IPv6/IPv4-mapped com-
munication with DSCP abilities. Depending on the chosen timestamping mode,
different functions in tstamp.c are called which activates timestamping on the
UDP socket (and network adapter, in the case of hardware timestamps). There
is also so-called operation modes; server (reflector), client (initiator) and dae-
mon (also initiator). Irrespective of operation mode, the server code is always
executed, implying that the client mode is in fact both providing an initiator
and a reflector. The difference between the client and daemon mode is:

25In this case, one kilobyte is 210 bytes
26The term “lint” in computer programming refers to the process of finding suspicious usage

of computer language
27Available at http://www.splint.org/
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main.c

reload()
Signal handler for SIGHUP
• Set global variable shouldreload

tstamp.c

tstamp_mode_*()
Activate the requested timestamp 
mode (hardware, kernel or 
userland) on the UDP socket and 
network interface

bind_or_die()
Prepare UDP and TCP sockets

net.c

send_w_ts()
Send a UDP packet and return itʼs 
TX timestamp
• sendto()
• tstamp_fetch_tx()

recv_w_ts()
Receive a UDP packet and return 
itʼs data, RX timestamp and DSCP
• recvmsg()
• tstamp_extract()
• dscp_extract()

dscp_set()
Set the ToS/traffic class on a 
socket for the next packet sent

dscp_extract()
Return the ToS/traffic class for a 
received packet

tstamp_extract()
Get timestamp from packet header
• CMSG_NXTHDR()

tstamp_fetch_tx()
Get TX timestamp for sent packet 
by receiving looped packet
• while no timestamp or timeout
• select()
• recv_w_ts() on error queue

loop.c

client.c

client_init()
Create variables and linked lists

server_find_peer_fd()
Find the TCP client socket 
corresponding to an address

client_res_fifo_or_die()
Daemon mode result output FIFO

client_msess_reconf()
Update client session list from XML

client_msess_gothello()
Mark session as ready for transmit

client_res_insert()
Add PING to client result list

client_res_update()
Loop through items in client result list
• If update is for this PING

• Update state and timestamps
• If PING is too old (timeout)

• Print result (client)
• write() result to FIFO
• Remove PING

• If PING is “ready”
• Print result (client)
• write() result to FIFO
• Remove PING

loop_or_die()
• pipe() for client timestamps
• while forever loop
• select() UDP, TCP and pipe
• if UDP

• recv_w_ts()
• if PING
• dscp_set()
• send_w_ts() and save TS
• server_find_peer_fd()
• send() TCP timestamp

• if PONG
• client_res_update()

• if TCP
• accept() client
• Save client file descriptor
• send() TCP hello

• if pipe
• read() data from client fork
• if hello
• client_msess_gothello()

• if timestamp
• client_res_update()

• if timeout (10 KHz)
• client_msess_transmit()
• if shouldreload
• client_msess_reconf()
• client_msess_forkall()

client_fork()
• fork() new process, forever loop

• connect() to server
• recv() T2 and T3 from server
• write() to client pipe

client_msess_forkall()
Create client timestamp processes

main()
Program starts here
• Parse command line
• bind_or_die()
• tstamp_mode_?()
• client_init()
• client_res_fifo_or_die()
• loop_or_die()

Figure 4.6: Source code chart

• The daemon mode outputs results to a named pipe (FIFO) whereas the
client mode outputs to the console (stdout) in a similar fashion to ping.

• The client mode initiates a client session against one reflector, as speci-
fied by the command-line argument, whereas the daemon mode supports
several client sessions configured according to an XML configuration file.

Functions that are exclusive for the daemon mode are client_res_fifo_or_die()
that provides the FIFO and client_msess_reconf() that reads client sessions
from the configuration file. In the chart figure, all green text indicates initiator-
specific code, and red text reflector-specific.

Then, the loop_or_die() function is invoked, beginning with the creation
of a pipe() for interprocess communication (IPC) with the client timestamp
processes. An infinite loop is entered, blocking at a select() on all input
sources: pings (server) and pongs (client) on the UDP socket, client times-
tamp connect requests (server) on the TCP socket, and finally client timestamps
(client) from process fork()s on the pipe. Compare with the figure. On the
select() timeout pings are sent (client) and client session are configured and
fork()ed upon launch or reload (client). In order to avoid false timestamp er-
rors because of the race condition between early pings and the timestamp TCP
connection; ping transmission is not started for a client session (msess) until the
client has received a “hello” message from the server’s TCP accept() routine
which is reported with client_msess_gothello().
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When starting a ping against itself (127.0.0.1 or ::1), the execution flow
of the loop would be

1. Idle, waiting for the loop’s select() to timeout.

2. Timeout is reached; client_msess_transmit() sends pings to all mea-
surement sessions that is ready for transmission according to the config-
ured interval, and has received a “hello” (no-one has). Since this is the
first iteration, “shouldreload” is true, and thus a client process is started
with client_msess_forkall().

3. client_fork() creates a new process, which connect()s to the server
address (itself).

4. The loop’s select() detects activity on the TCP socket, accept()s the
connection from the fork()ed client process, adds it to the selects()s
file descriptor set, and send()s a “hello” packet.

5. The fork()ed client process recv()s the “hello”, and forwards it to the
main loop process by write()ing it to the shared pipe IPC.

6. The loop’s select() detects activity on the pipe, and marks the measure-
ment session as ready with client_msess_gothello().

7. Idle, waiting for the loop’s select() to timeout.

8. Timeout is reached; client_msess_transmit() sendto()s a ping to the
server (assuming that the session is ready for transmission according to
the configured interval) with the configured DSCP and records the ping
and it is T1 (TX) timestamp with client_res_insert().

9. The loop’s select() detects activity on the UDP socket, recvmsg()s the
ping and notes its RX timestamp and DSCP value. It then responds
by sendto()ing a corresponding pong, noting its TX timestamp, and
send()ing the T2 (RX) and T3 (TX) timestamps over TCP to the client’s
socket as identified by server_find_peer_fd().

10. The loop’s select() detects activity on the UDP socket, recvmsg()s the
pong while recording its T4 (RX) timestamp with client_res_update().

11. The fork()ed client process recv()s the timestamp packet, and forwards
it to the main loop process by write()ing the shared pipe IPC.

12. The loop’s select() detects activity on the pipe, and records the times-
tamp packet’s T2 and T3 timestamps with client_res_update() which
notes that all timestamps are present, and thus outputs the results.

The process is not, as the enumerated list suggests, sequential. The nature of
select() allows any of these events, from multiple client and server sessions,
to occur “simultaneously” in an asynchronous, interleaved manner.
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4.6 Data collection and interface program (manager)

The manager is built up by four main parts.

• Manager, the core class which keeps track of the different components.
It creates instances of component classes, starts threads, handles UNIX
signals and also handles incoming XML-RPC requests.

• Probed performs all operations related to the probed program; starting
probed, opening and reading the FIFO. The data is parsed into a Probe

object and passed to the ProbeStore. The FIFO reading is run in a
separate thread.

• ProbeStore is the most extensive part of the manager application, contain-
ing more than one third of the code. The ProbeStore performs three dis-
tinct tasks, namely keeping state of and pre-calculating received measure-
ment data, storing it in an in-memory SQLite database and pre-calculating
stored data when it is requested. It also saves pre-calculated aggregated
data over 300 seconds.

• Maintainer performs maintenance operations at regular intervals such as
deleting old data from database, generating aggregates and connecting the
central control panel service looking for configuration changes once every
hour.

4.7 Central management (SLANG control panel)

A requirement which Tele2 put heavy emphasis on was ease of administration
with a vision that as much work as possible should be automated. A major part
of the administrative efforts has previously been setting up new measurement
nodes and setting up all relevant measurement sessions. Due to this a lot of
effort has been put into simplifying these procedures in the SLANG system.

The component which performs the central administrative tasks is the SLANG
control panel, essentially a web application whose primary duty is to supply the
nodes with an up-to-date configuration, a list of all measurement sessions to
set up. As the development progressed, other features was added along the
way which gives an overview of the current nodes, measurement groups and
measurements.

The control panel itself does not store any data about what nodes there are or
anything else for that matter; instead it it tightly coupled with Tele2’s Node and
Information Listing System (NILS) via a remote API which was added to the
current NILS system together with a few smaller modifications to accommodate
SLANG data. NILS is basically a database containing all nodes in Tele2’s
network their function, location and other data regarding them. It was for
SLANG extended slightly. One extension is the addition of SLA groups, groups
to which nodes can belong. Between the nodes belonging to the same SLA
group a mesh of measurements can then be generated by the control panel, a
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mesh which can look different depending on what type of SLA group is regarded
and what sessions the group is configured to set up. Currently, only one SLA
group type is defined; the full-mesh type. As can be imagined, a SLA group
of type full-mesh will perform full mesh measurements, that is there will be
measurements defined between all nodes in the group.

When the manager (see section 4.6) of a SLANG node starts up, it fetches
its configuration from the control panel. When the control panel receives a
configuration request a quite extensive process is initiated.

1. First, information regarding the connection node is fetched from NILS
together with its SLA group assignment, the SLA group configuration
and a list of all nodes belonging to the same group. The node requesting
configuration will hereafter be addressed as the current node. Note that
a SLA node can belong to multiple groups and information regarding all
groups are fetched. Also a list of current measurements the current node
is involved in is fetched.

2. From the SLA group configuration a set of all measurements involving
the current node is generated. To eliminate double measurements the set
elements is defined so a measurement from node A to node B is considered
equal to a measurement from node B to node A. The procedure is repeated
for all SLA groups the node belongs to, with the measurements for all
groups added to the same set, also this to eliminate duplicates.

3. The set of all calculated measurement sessions, the required sessions are
compared to the set of current sessions fetched from NILS. If there are
differences (due to new sessions added to the group template or nodes
added/removed), take note of all other nodes affected by the differences
and make sure that the NILS database is updated.

4. If there were differences which affected other nodes, start over from step 1
for each of the other affected nodes and push out their new configuration
to them via the manager XML-RPC API.

5. Generate configuration and return to the current node.

As previously stated the SLANG control panel is also able to present data to the
end user. It gives an overview of the current state of the system by listing nodes,
groups and measurements as well as displaying current measurement statistics
and node internal memory statistics. Neither for this any state is kept in the
control panel application, except from some short-time (one minute) caching of
the data. Instead, everything is fetched from NILS, ASM and directly from the
SLANG nodes.

To speed up the development (and avoiding to reinvent the wheel) the control
panel was build using the Pylons Python web development framework together
with model classes built to work with the XML-RPC interfaces provided by
NILS and the SLANG nodes.
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4.8 Node and Information Listing System (NILS)

NILS is a system developed at Tele2 to keep track of their network nodes. As
new equipment is deployed or removed the NILS database is updated as a part
of the work flow to mirror the current state.

The functionality of NILS was slightly extended due to SLANG require-
ments.

• Each node can now be member of an SLA group. An SLA group groups
together nodes between which a specific set of measurements is supposed
to be set up. Each group has a name, a description and a type, for example
“slang” for SLANG measurements.

• The SLA groups have a list of measurement templates defining what types
of measurements should be performed, for example one IPv4 session send-
ing 100 packets per second with DSCP ef and one IPv6 session, 20 packets
per second in the best-effort traffic class.

• A list of the current running measurement sessions. This is mainly kept
to make sure that each measurement session has a unique static ID which
can be used when measurement data is fetched from the nodes.

• Then, an external XML-RPC API to many of the NILS functions was
added to give external systems (primarily the SLANG control panel) access
to the NILS database.

4.9 Using SLANG

Users will be able to monitor the network, add or remove nodes, and configure
the measurement sessions by simply browsing to the user-friendly SLANG con-
trol panel or using NILS’s command-line interface. Administrators on the other
hand are required to understand the many components of SLANG, and their
interfaces, in order to fully comprehend the working of the system and service it
in the unfortunate cases of failures. In the upcoming sections, the compilation
of the code into deployable nodes will be detailed, followed by administration
tasks, and concluding with end-user tasks.

4.9.1 Creating an operating system USB-stick

The operating system image, based on Debian 6.0, is simply a base operating
system. Apart from Debian itself, it contains a timestamp-enabled kernel, basic
packages, configured LDAP authentication with a configuration console as shell,
and many changes relating to its ability to run on a read-only root file system.
It weights in at a mere 62 MB, and is copied to a USB-stick by typing

$ gunzip -c -d sla -ng.img.gz | dd of=/dev/disk1 bs =1048576
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where“/dev/disk1” is the path to the USB stick. When plugged into a computer
supporting USB booting, it should simply start, outputting to the VGA and RS-
232 (serial) consoles. In order to populate it with the SLANG programs, log in
as the super-user “root” and execute the Debian package installation commands
described in the next section.

4.9.2 Compiling from source

Although many components are developed in high-level scripting languages,
some of the code has to be compiled. While in the repository’s source code root
folder, type

$ ./ deploy install

to create the necessary build scripts using autoconf. The project has been
tested with GNU Autoconf 2.67. Then, or if one is building from a release with
build scripts in place, type

$ ./ configure

to generate the make files. Finally, build the probe program binary with

$ make
# make install

with the latter command also installing the program into the default program
folder if executed as super-user “root”. Since the Linux-based operating system
Debian was used as foundation for the project, one can type

$ ./ deploy debian

to to create a Debian package that is suitable for deployment. The package
contains probed, sla-ng-manager that collects the data and makes it available
over XML-RPC, sla-ng-view that can be used to monitor probed (when in
daemon mode) and the sla-ng-manager, a start-up script for init.d and finally
the configuration user interface ui.sh. To install the Debian package, type

# dpkg -i sla -ng.deb
# apt -get install -f

as “root”. The second command’s purpose is to download and install any de-
pendencies required by the package. Verify that probed is installed by typing

$ probed

and compare the output with

SLANG probed 0.1
usage: probed [-kqsu] [-c addr] [-d path] [-i iface] [-p port] [-f path]

MODES OF OPERATION
-c addr Client: PING ’addr’, print to standard output
-s Server: respond to PINGs
-d path Daemon: server and (many) clients , print to FIFO ’path’

OPTIONS
-f path Daemon only , path to config file [default: probed.conf]
-w time Client only , wait time between PINGs [default 500] (ms)
-i iface Network interface for hardware timestamps [default: eth0]
-p port UDP port , both source and destination [default: 60666]
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-k Create timestamps in kernel driver instead of hardware
-u Create timestamps in userland instead of hardware
-q Be quiet , log to syslog only

which happens to be the brief help message for the program.

4.9.3 Running probed stand-alone

For testing purposes or short-time measurements probed can be invoked man-
ually. In order to verify that the program is working, start it with the simplest
possible configuration by running

$ probed -u -c localhost

where “u” instructs it to timestamp in user-land (kernel or hardware timestamps
requires patched kernels and/or certain hardware) and “-c localhost” to start in
client (initiator) mode, pinging the loopback interface of the local computer. In
reality, also the server (reflector) mode is started; it is implicit. Press CTRL+c
to interrupt the ping. The output will be

SLANG probed 0.1
probed: Binding port 60666
probed: Using userland timestamps
probed: client: ::1: Connecting to port 60666
probed: server: ::1: 8: Connected
probed: client: ::1: Connected
Response 1 from 0 in 11776 ns
Response 2 from 0 in 15257 ns
^C
2 ok, 0 dscp errors , 0 ts errors , 0 unknown/dups
0 lost pongs , 0 timeouts , 0.000000% loss
max: 15257 ns, avg: 13516 ns, min: 11776 ns

if the program was correctly installed, the port 60666 was available, the loopback
interface is up, and the computer supports IPv6. The program also supports
IPv4; but using IPv4-mapped IPv6 sockets. The address ::1 the actually the
IPv6 loopback address; similar to 127.0.0.1 for IPv4. The first line reports the
software version. The second and third line is shared by both client and server,
and confirms that the required settings were successfully used. The fourth line
is the client’s (initiator’s) TCP client fork(), doing a connect() to the server’s
(reflector’s) TCP server. The fifth line is the main loop (shared by both client
and server) doing an accept() of the connection into socket file descriptor “8”.
On the sixth line, the client announces that it has received a “hello” packet from
the server, and will therefore start sending UDP pings. Not surprisingly, the
local computer responds to itself, and the results are printed when CTRL+c
(interrupt) is pressed.

For a real-world measurement using hardware timestamps, log into a SLANG
node with a supported network adapters such as Intel 82580, or prepare a server
according to section 4.5.4. One way of confirming that the hardware timestamps
are working, is to directly connect to nodes using only a cable/fiber, and execute
a measurement. As the super-user “root”, start a server (reflector) on one node
by typing

# probed -s -i eth2
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where “eth2” is a supported network adapter. Compare the output with

SLANG probed 0.1
probed: Binding port 60666
probed: Using hardware timestamps
probed: Server mode: waiting for PINGs

and verify that no errors occurred. Typical errors include the port being used
(use“-p 1234”to choose another) or the hardware not being supported (SIOCSHWTSTAMP
not being supported; verify that the correct network adapter was chosen with
“-i”). Start a client on the other computer by typing

# probed -c 10.0.0.2 -i eth2

comparing the output with

SLANG probed 0.1
probed: Binding port 60666
probed: Using userland timestamps
probed: client: ::ffff :10.0.0.2: Connecting to port 60666
probed: client: ::ffff :10.0.0.2: Connected
Response 1 from 0 in 1240 ns
Response 2 from 0 in 1240 ns
^C
2 ok, 0 dscp errors , 0 ts errors , 0 unknown/dups
0 lost pongs , 0 timeouts , 0.000000% loss
max: 1240 ns, avg: 1240 ns, min: 1240 ns

which shows the typical delay (1240 ns; about 1 µs) and delay variation (close
to 0 µs) for a working hardware timestamp configuration with Intel 82580 con-
troller.

There are a couple of common misconfigurations, causing confusing errors.
To start with, the “TX timestamp error” will occur if hardware or kernel times-
tamp is chosen, and for example pinging localhost. That is because no times-
tamp will be generated, since the packets never leave the computer via a sup-
ported network adapter. Another scenario causing the same problem is in com-
puters with multiple network adapters, and packets leave through the wrong
interface. Let’s say that hardware timestamps were requested on eth2, but the
packet leaves on another interface called eth1 (because the routing table in-
structed it to do so) with kernel timestamp support only; TX timestamp errors
will occur.

Beware that since timestamps are delivered to the initiator from the reflec-
tor via TCP, there is a possibility of UDP pings being successful, but missing
timestamps and thus RTT; or the other way around.

4.9.4 Running probed in daemon mode

In Linux and other Unix-like operating systems, a daemon is a program running
in the background, usually providing a service. When running probed in daemon
mode, it starts a server and a number of clients based on a configuration file
with syntax

<config >
<probe id="1">

<address >130.244.97.213 </ address >
<dscp >0</dscp >
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<interval >5000 </ interval >
<type >slang </type >

</probe >
</config >

The client results are outputted to the named pipe() specified by the FIFO ar-
gument with a structure similar to the SLANG ping/pong packets, and identical
to the client result structure

#define STATE_OK ’o’ /* Ready , got both PONG and valid TS */
#define STATE_DSERROR ’d’ /* Ready , but invalid TOS/traffic class */
#define STATE_TSERROR ’e’ /* Ready , but invalid timestamps */
#define STATE_PONGLOSS ’l’ /* Ready , but timeout , got only TS , lost PONG */
#define STATE_TIMEOUT ’t’ /* Ready , but timeout , got neither PONG or TS */
#define STATE_DUP ’u’ /* Got a PONG we didn ’t recognize , DUP? */

struct res {
struct timespec created;
char state;
struct in6_addr addr;
uint32_t id;
uint32_t seq;
struct timespec ts[4];
LIST_ENTRY(res) list;

};

The field “created” usually equals to T1, but since T1 is empty in the case of
timestamp errors and not necessarily synchronized with the wall time for hard-
ware timestamps, a separate field always populated with the computer clock’s
wall time is needed in order to determine timeouts, etc. The “state” is a char

(not an enum of historical reasons, having to do with the structure fitting within
128 bytes) which equals to one of the defines above. The address “addr” is
the server (reflector) address that was being pinged. The “id” and “seq” are
used together with the address to match packets. The array “ts” contains the
four timestamps, T1 to T4. The “list” is an internal variable used by probed

to maintain a linked list. The program sla-ng-view can be used to read from
the FIFO, and view the results on the terminal. Note that probed are rarely
started in daemon mode manually, but rather launched by the sla-ng-manager

that is started on boot on SLANG nodes.

4.9.5 Using the sla-ng-manager

As this program’s purpose is to collect and aggregate information from probed

and make it available on an XML-RPC interface, it is rarely invoked manually,
but rather started by the SLANG nodes’ /etc/init.d/sla-ng start-up script
on boot. To restart it, type

# /etc/init.d/sla -ng restart

but beware that the data collection will be restarted, creating a “gap” (statistics
outage) of a few minutes in the graphs. Normally, the SLANG control panel
interfaces automatically with the sla-ng-manager, but it is possible to perform
many tasks manually as well. A few examples using Python as programming
language will be presented hereafter. Starting the interpreter on your computer
with
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Figure 4.7: The SLANG’s configuration console; ui.sh

$ python

and prepare a connection by typing

>>> import xmlrpclib
>>> s = xmlrpclib.ServerProxy(’http ://lab -slang -1. tele2.net :8000’)

where“lab-slang-1.tele2.net” is the host name or IP address of the SLANG node.
Functions are then executed on the object “s”, like

>>> s.reload ()

that forces the program to download the probed XML configuration from the
SLANG control panel (as defined by the configuration file /etc/sla-ng/manager.conf)
and instructs probed to reload the configuration by sending the HUP signal. The
most commonly used function is probably get_last_dyn_aggregate(id, num)

that returns the last num number of aggregated 5-minute intervals from mea-
surement session id with dynamic resolution, depending on packet loss.

4.9.6 Deploying a SLANG node

A complete SLANG node is a computer with an Intel 82580 network card,
bootable using the USB-stick, and populated with the SLANG Debian pack-
age. Such a node is easily deployed thanks to the configuration console, that is
automatically started for LDAP users. For other users, such as “root”, simply
type

# ui.sh
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to launch it. The main screen is depicted in figure 4.7.
From within the configuration console, important settings such as IP ad-

dresses and host name is set. It is also possible to perform debugging using
for example the ping viewer. It reads directly from probed’s output FIFO, and
when started with “-1” it shows all results, for all measurement sessions. If one
of the sessions is found particularly interesting, the viewer for aggregated pings
can be used, asking for a specific measurement session ID. It will query the man-
ager’s XML-RPC interface for aggregated pings during a user-defined period of
time.

As noted in section 4.4 the system may be administered directly using Linux’s
shell. It is accessed by choosing “Start Shell (bash)” from the menu, and allows
for more in-depth access to the measurement node.
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Chapter 5

Conclusions

The project objective as stated in the introduction was to provide Tele2 with a
modern, accurate quality assurance and reporting system. The initial assumption
was that affordable, commercially available products would provide sufficiently
accurate measurements. As the tested products proved to be lacking the project
scope grew in size, as measurement nodes had to be developed.

Despite the constrained schedule, the final system did provide all required
functions on time. As noted in section 5.2 there is however room for improve-
ment in several areas; such as further validation of the accuracy, adjusting the
protocol and programs to adhere to best practices, et cetera. The accuracy
requirement that disqualified most commercial products were met with flying
colors; better than 1 µs. In some configurations the reported jitter of a short
wire was 8 ns; suggesting exceptionally good accuracy.

5.1 Discussion

Many of the thesis’ topics can be further elaborated. A large number of design
choices has been made, some which are mentioned, other not. This section
discusses some of these topics.

The estimation of measurement accuracy which was described in section
3.2 has room for improvements. The method of simply performing a large
number of measurement between two devices connected directly without any
interfering equipment and looking for the maximum delay variation between
two consecutive packets might not be very scientific, but provides an idea about
the stability of the measurement. To simply look at the difference between
maximum and minimum delay measured over a time period might give a better
result, but as the variation seem is so much lower than the accuracy requested by
Tele2 (100 µs) any deeper studies is not required. The maximum delay variation
ever seen during the tests has been around 150 ns, and the decision has been
made to take a conservative approach and state an accuracy of less than 1 µs;
the time it takes for an electric signal to travel ≈192 m in a twisted-pair cable.
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As actual timestamps are collected when packets are sent and received, it
seems highly unlikely that a bug in the measurement application probed or the
timestamping API skews the delay measurements to the low variation seen. The
same application and API has also been used with kernel-space timestamping.
These tests have demonstrated other characteristics, which can be expected
from kernel-space timestamps, and thus adds to probed’s credibility.

In next section it is proposed that the protocol itself is improved before being
exposed to a wider audience. Its imperfections were noted in section 4.5.5, and
can only be justified by the fact that architecture portability nor extendibility
were priorities during the development process that was focused on producing
a “proof of concept”.

One of probed’s weaknesses, especially when it comes to attracting a wide
audience, is the fact it requires re-compilation and even patching of the Linux
kernel. Although kernel timestamps could be implemented in all network drivers
without any side effects, that has not happened during the relatively long time
that the infrastructure has been in place. Even with the patches developed
by this project, and other driver patches, Linux still has the timestamp API
disabled by default, and has to be re-compiled for it to work. Finally, typical
Linux distributions ship with Linux kernel versions much older than what is
available. For example, Debian 6.0 that is used for this project, was released in
February 2011, with kernel 2.6.32 which was released in December, 2009. On
the bright side, the participants of this project didn’t experience the notoriously
difficult process of getting patches into the official Linux kernel, although none
of us are kernel developers nor had committed to Linux before.

Early tests has shown that the system can handle about 10,000 pps. With
some optimization this can probably be increased to support higher rates making
higher measurement packet rates and more concurrent measurements possible.
The fact that probed sends pings during the select() timeout both inherently
limits the number of packets per second (pps) per measurement session, and
also increases the idle CPU load because of unnecessary timeouts. There is
also currently not possible to exactly time the interval between pings, because
sessions with identically configured interval (pps) will be sent sequentially. All
these issues could be resolved by replacing the timeout with precision timers
triggering the select().

Finally, there is a trade-off between low maintenance and being up-to-date
with security patches. One can ask for how long a Linux computer can be
securely operated without updates. The kernel itself has a good track record
with very few remote exploits. The system is aggressively streamlined, with
very few installed software packages. Finally, since Debian is a commonly used
operating system, a remote exploit in a core component would probably not
go under the radar. Still, in the case of serious security vulnerability, someone
would have to log into each and every node, and run Debian’s update procedure.
Anyhow, it is probable that all nodes deployed will enjoy packet filtering from
a fronting router, limiting access to Tele2 networks, or that the SLANG nodes
are upgraded with a packet filter (firewall) themselves.
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5.2 Further work

The work hereby presented can be extended in a number of ways. For starters,
the term“quality”can be further elaborated as the entire concept of using packet
loss, delay and delay variation as quality measures has not really been assessed.

Additional effort may be put into the entire SLANG system. Regarding mea-
surements, one-way measurements could be interesting, as would adding sup-
port for the standardized One-Way Active Measurement Protocol (OWAMP)
and Two-way Active Measurement Protocol (TWAMP) protocols. Also, Tele2
has requested support for the Juniper RPM as well as Cisco IP SLA measure-
ment protocols to be able to perform measurements against equipment already
deployed. The accuracy of measurement will of course be worse, but so will the
quality requirements of the topical parts of the network.

Further, it would be interesting to add one-way measurement support. For
delay measurement as stated earlier highly synchronized clocks are required,
something that could be done with GPS receivers or maybe using the clock
synchronization network used by Tele2’s SDH network. One-way delay varia-
tion measurements can however be derived with high accuracy from the data
collected by the current system without any complications.

The current code base for the probed program is not very portable; it is not
endian-safe and does not take differences in memory alignment of 32 versus 64
bit systems into account. Neither will it compile or run on any other operating
system then Linux. If SLANG is to be opened to a wider audience, this would
be highly desirable, if not necessary.

5.3 Summary

Surprisingly, none of the commercially available products evaluated proved suit-
able according to Tele2’s requirements for a IP network delay measurement sys-
tem. It was with a great portion of luck that Linux’s timestamp API and Intel’s
82580 Ethernet controller were released in time for this project, as they enabled
the development of such an accurate delay measurement system.

The system was decomposed into several independent layers, most of them
having XML-RPC interfaces in-between. Each of these layers provides a core
functionality; such as being an appliance (Intel 82580, Debian USB and ui.sh),
performing accurate measurements (probed), calculating on-node aggregated
data (manager), automatically computing configurations for all nodes (control
panel), integrating the system into Tele2’s node and address planning system
(NILS) and finally collecting and presenting the statistics (ASM).
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Appendix A

Code

Listing A.1: Linux patch “fixing hw timestamping in igb”
diff -u linux -2.6.37/ drivers/net/igb/igb_main.c linux/drivers/net/igb/igb_main.c
--- linux -2.6.37/ drivers/net/igb/igb_main.c 2011 -02 -03 10:02:53.000000000 +0100
+++ linux/drivers/net/igb/igb_main.c 2011 -02 -03 10:12:40.000000000 +0100
@@ -98,6 +98,7 @@
static void igb_setup_mrqc(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);

+static void igb_init_hw_timer(struct igb_adapter *adapter );
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);

@@ -1987,6 +1988 ,10 @@
} #endif

+
+ /* do hw tstamp init after resetting */
+ igb_init_hw_timer(adapter );
+

dev_info (&pdev ->dev , "Intel(R) Gigabit Ethernet Network Connection\n"); /* print bus type/speed/width info */
dev_info (&pdev ->dev , "%s: (PCIe:%s:%s) %pM\n",

@@ -2301,7 +2306 ,6 @@
return -ENOMEM;

}
- igb_init_hw_timer(adapter );

igb_probe_vfs(adapter );
/* Explicitly disable IRQ since the NIC can be in any state. */

Listing A.2: Linux patch “net: TX timestamps for IPv6 UDP packets”
diff --git a/net/ipv6/ip6_output.c b/net/ipv6/ip6_output.c
index 94 b5bf1 ..74 d9343 100644
--- a/net/ipv6/ip6_output.c
+++ b/net/ipv6/ip6_output.c
@@ -1115,6 +1115 ,7 @@ int ip6_append_data(struct sock *sk, int getfrag(void *from , char *to ,

int err;
int offset = 0;
int csummode = CHECKSUM_NONE;

+ __u8 tx_flags = 0;
if (flags&MSG_PROBE)

return 0;
@@ -1199,6 +1200 ,13 @@ int ip6_append_data(struct sock *sk, int getfrag(void *from , char *to,

}
}
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+ /* For UDP , check if TX timestamp is enabled */
+ if (sk->sk_type == SOCK_DGRAM) {
+ err = sock_tx_timestamp(sk, &tx_flags );
+ if (err)
+ goto error;
+ }
+ /*

* Let ’s try using as much space as possible.
* Use MTU if total length of the message fits into the MTU.

@@ -1303,6 +1311 ,10 @@ alloc_new_skb :
sk -> sk_allocation );

if (unlikely(skb == NULL ))
err = -ENOBUFS;

+ else
+ /* only the initial fragment is
+ time stamped */
+ tx_flags = 0;

}
if (skb == NULL)

goto error;
@@ -1314,6 +1326 ,9 @@ alloc_new_skb:

/* reserve for fragmentation */
skb_reserve(skb , hh_len+sizeof(struct frag_hdr ));

+ if (sk->sk_type == SOCK_DGRAM)
+ skb_shinfo(skb)->tx_flags = tx_flags;
+

/*
* Find where to start putting bytes
*/
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